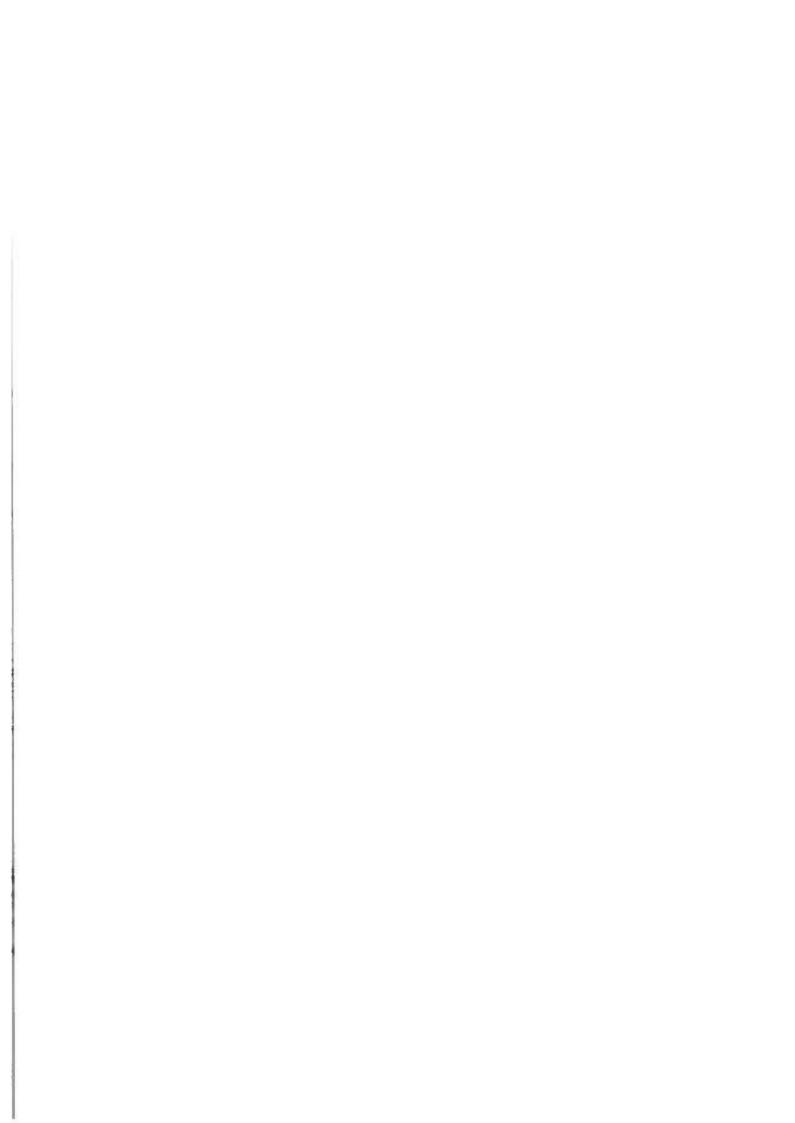


Primăria Municipiului București

 $\pi \pi \pi$

Asociația de Dezvoltare Intercomunitară pentru Transport Public București-Ilfov



STUDIU DE OPORTUNITATE

Achiziționare mijloace de transport mai puțin poluante necesare îmbunătățirii transportului public de călători în Municipiul București

octombrie 2018

fff

Foaie de capăt

STUDIU DE OPORTUNITATE

Achiziționare mijloace de transport mai puțin poluante necesare îmbunătățirii transportului public de călători în Municipiul București

Elaboratori

Asociația de Dezvoltare Intercomunitară pentru Transport Public București-Ilfov

Beneficiar

Lista de semnaturi:

Aura RĂDUCU, Director Executiv ADTPBI

Adrian Sorin MIHAIL, Director General STB SA

Octombrie 2018

CUPRINS

1. Date generale privind investiția propusă

- 1.1 Obiectivul de investiții
- 1.2 Localizarea proiectului

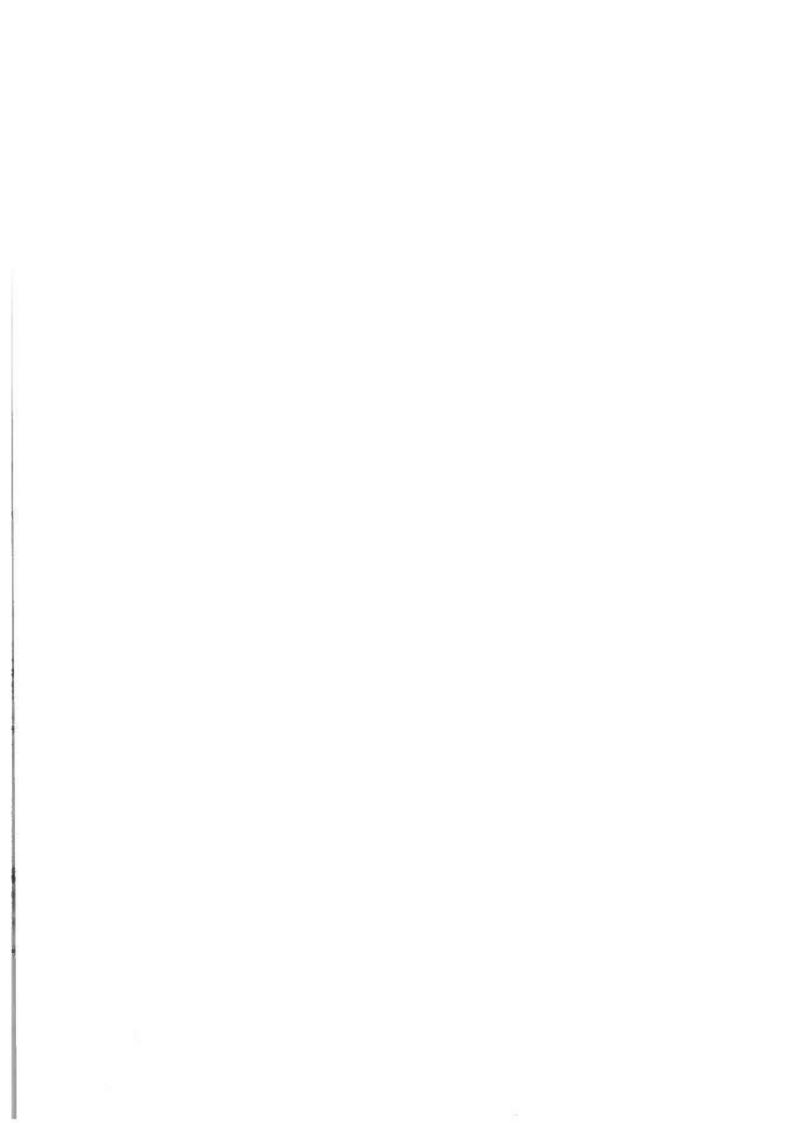
2. Analiza situației existente

- 2.1 Caracteristicile infrastructurii
- 2.2 Traseele utilizate
- 2.3 Condiții de garare
- 2.4 Facilitățile de întreținere

3. Problemele și nevoile specifice care justifică investiția

4. Scenariile tehnico-economice prin care obiectivele proiectului de investiții pot fi atinse

- 4.1 Prezentare soluții alternative pentru problemele identificate
- 4.2 Analiza comparativā a opțiunilor
- 4.3 Descrierea avantajelor soluției recomandate
- 4.4 Impactul asupra mediului


5. Prezentarea soluției recomandate

- 5.1 Corelarea investiției cu Planul Integrat de Calitate a Aerului în Municipiul București 2018 2022 și
- cu Planul de Mobilitate Urbană Durabilă București Ilfov 2016-2030
- 5.2 Descrierea și justificarea numărului și parametrilor tehnici al vehiculelor ce vor fi achiziționate

6. Strategia de întreținere a noilor mijloace de transport

- 7. Concluzii
- 8. Surse de date pentru elaborarea studiului
- 9. Echipa de experți care a elaborat studiul de oportunitate

STUDIU DE OPORTUNITATE

Achiziționare mijloace de transport mai puțin poluante necesare îmbunătățirii transportului public de călători în Municipiul București

1. Date generale privind investiția propusă

Poluarea este una dintre principalele probleme cu care se confruntă marile orașe. În acest sens, la nivel european se acționează la multe niveluri pentru a reduce poluarea aerului: pe cale legislativă, prin cooperarea cu sectoarele responsabile de poluarea aerului, prin autoritățile naționale, regionale și prin organizațiile neguvernamentale și prin cercetare. Politicile UE vizează reducerea emisiilor și stabilirea de limite și valori țintă pentru calitatea aerului. De-a lungul ultimelor decenii, Comisia Europeană a condus eforturile depuse de UE pentru reducerea progresivă a emisiilor de poluanți provenind de la vehiculele rutiere prin îmbunătățirea calității combustibililor și prin stabilirea de valori limită de emisie din ce în ce mai stricte pentru vehiculele noi.

Statele europene au demarat acțiuni pentru reducerea poluării în marile orașe, în principal poluarea provenită din domeniul transporturilor. Aceste măsuri au inclus încurajarea transportului public și modernizarea flotelor utilizate pentru realizarea transportului în comun prin achiziția de mijloace de transport mai puțin poluante, precum: tramvaie, autobuze electrice, autobuze hibrid, autobuze GNC și troleibuze.

În ultimii ani s-au intensificat eforturile Primăriei Municipiului București pentru reducerea emisiilor poluante prin înnoirea parcului de mijloace de transport public utilizate de RATB/STB. În condițiile în care nu s-a impus în mod clar un tip de mijloc de transport printr-o performanță superioară combinată (emisii poluante plus costuri), s-a optat pentru un mix de soluții adecvate situației actuale. După încheierea contractului de achiziție pentru 400 de autobuze diesel EURO6 a urmat depunerea cererilor de finanțare pentru 100 de tramvaie și 100 de autobuze electrice prin Programul Operațional Regional.

Dintre celelalte mijloacele de transport cu carburanți alternativi, mai ecologici, doar trei utilizează tehnologii mature, respectiv troleibuzele, autobuzele hibrid și autobuzele pe gaz natural comprimat, în timp ce autobuzele pe hidrogen sunt încă o soluție puțin dezvoltată și testată. Având în vedere constrângerile curente legate de spațiile de garare și infrastructură aferentă de alimentare și mentenanță, opțiunile pentru următoarea etapă de investiții au rămas troleibuzele și autobuzele hibride.

Investiția propusă prin prezentul Studiu de Oportunitate este constituită din 100 de troleibuze cu autonomie și 130 de autobuze hibrid, necesare pentru reducerea poluării la nivelul Municipiului București.

A. Troleibuze

Troleibuzele au început să fie exploatate ca mijloace de transport public încă de la 1880, ajungând la maximul dezvoltării imediat după terminarea celui de-al Doilea Război Mondial. Dezvoltarea acestui mod de transport a ajuns la o stagnare importantă, până în anii 1970, când a fost din nou preferat ca mod de transport predominant în orașe, odată cu Criza Petrolului. Deși acest moment a reprezentat din nou un punct important de afirmare a sistemului de troleibuze, nu a fost suficient pentru a readuce sistemul de troleibuze la nivelul de utilizare de care se bucura imediat după terminarea celui de-al Doilea Război Mondial.

Chiar și cu aceste impedimente, troleibuzele reprezintă o parte importantă din sistemul de transport în multe orașe de pe glob. Prin dezvoltarea acestui sistem și în alte orașe, se dezvoltă și sistemele complementare al acestui mod de transport, precum construcția și îmbunătățirea vehiculelor, dar și extinderea infrastructurii de generare de energie electrică. Acest lucru ar conduce la o modificare a preturilor, costurilor de utilizare și în principal, la o eficiență economică de pe urma utilizării troleibuzelor.

Astfel, promovarea transportului cu troleibuzele nu este doar necesar, dar trebuie să reprezinte și un impuls care să conducă la decizia autorităților locale de a introduce sistemul de transport public cu troleibuze și în orașele în care acesta nu există, sau reintroducerea acestui mod de transport acolo unde s-a decis renunțarea la acesta în trecut.

Programul Central European are ca obiectiv principal îmbunătățirea accesibilității în întreaga Europa Centrală, prin promovarea și introducerea de noi sisteme de transport inteligente și durabile, precum și a sistemelor tehnologice și non-tehnologice avansate, de control a transporturilor și a traficului, pentru îmbunătățirea și dezvoltarea condițiilor de transport.

Principalul proiect din cadrul acestui program este Trolley, un program ce promovează folosirea autovehiculelor electrice în transportul public și care este de asemenea finanțat integrat prin Programul Central European. În cadrul acestui proiect, se dorește extinderea rețelei de troleibuze, sau chiar instalarea unor rețele noi, în cadrul orașelor principale din țările situate în Europa Centrală și de Est, întrucât troleibuzele reprezintă un mod de transport sustenabil, de viitor, cu ajutorul cărora emisiile de gaze cu efect de seră din centrul orașelor poate fi redus considerabil, prin înlocuirea mijloacelor de transport propulsate prin motoare cu combustie, cu troleibuze.

Pentru susținerea acestui proiect și pentru dezvoltarea unui mod de transport ecologic și durabil, mai multe orașe au semnat Declarația pentru troleibuze, printre care regăsim Salzburg, Brno, Gdynia, Eberswalde, Szeged, Parma, precum și Leipzig, oraș în care se vor reintroduce troleibuzele.

Așadar, principalele obiective ce se doresc atinse în cadrul acestui proiect, care a fost semnat și de către RATB (actualmente STB SA), principalul operator de transport din regiunea București – Ilfov, sunt:

- lucrul în comun pentru schimbul de experiență;
- promovarea transportului cu troleibuze în orașele din Europa Centrală și de Est și promovarea proiectelor complementare acestui tip de transport;
- participarea în cadrul Programului Central European, prin susținerea inițiativelor referitoare la transportul public durabil, în special referitor la autobuzele electrice și troleibuze;
- aducerea schimbārilor dorite pentru îmbunātāțirea calității transportului în Europa Centrală.

În Europa, rețeaua de troleibuze a reprezentat și încă mai reprezintă un mijloc de transport fiabil, datorită perioadei îndelungate de exploatare și de asemenea este și un mijloc de transport prietenos cu mediul, datorită propulsiei electrice. Acest lucru poate fi observat prin gradul de răspândire al acestui vehicul pe întreg teritoriul Europei, după cum este prezentat în imaginile următoare:

Austria, Salzburg

Belarus, Minsk

Bosnia - Herțegovina, Sarajevo

Cehia, Hradec Králové

Estonia, Tallinn

Franța, Lyon

Bulgaria, Sofia

Grecia, Atena

Ungaria, Budapesta

Italia, Roma

Germania, Solingen

Moldova, Chişinău

Olanda, Arnhem

Norvegia, Bergen

Letonia, Riga

Lituania, Vilnius

Rusia, Moscova

Serbia, Belgrad

Polonia, Gdynia

Portugalia, Coimbra

Suedia, Landskrona

Elveția, Berna

Slovacia, Bratislava

Spania, Castellón de la Plana

De asemenea, troleibuzele se găsesc și în alte orașe din țările menționate anterior, ceea ce nu poate decât să arate faptul că acest mijloc de transport încă reprezintă un interes pentru țările din Europa, atât din punct de vedere al fiabilității (unele sisteme de troleibuz funcționând de la începutul anilor 1900) și din punct de vedere al reducerii emisiilor gazelor cu efect de seră, întrucât troleibuzul este propulsat

de un motor electric.

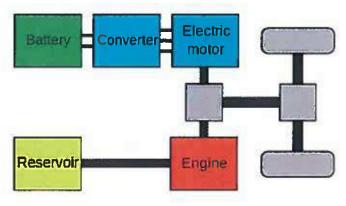
A. Autobuze hibrid

Primul vehicul hibrid a fost automobilul Lohner-Porsche, realizat de Ferdinand Porsche în 1901, deși elemente ale sistemelor hibride apăruseră deja din 1896 (Armstrong Phaeton – frânare regenerativă). Primul autobuz hibrid benzină-electric (motorul pe benzină acționa un generator care alimenta două motoare electrice care antrenau propulsia) a fost produs de Fischer Motor Vehicle Company of Hoboken, New Jersey, SUA și a fost achiziționat de London General Omnibus Co în 1903.

Autobuzul electric hibrid este definit oficial ca un autobuz acționat atât printr-un sistem de propulsie cu ardere internă, cât

THE FISCHER MOTOR OWNINGS

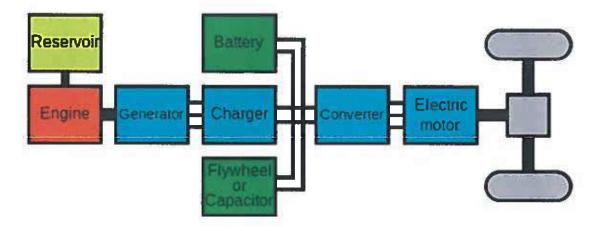
și/sau printr-un sistem de propulsie electric, alimentat de baterii electrice. O altă definiție propune ca în categoria autobuzelor electric hibrid să intre și vehiculul care obține energie de la un carburant doar


în scopul reîncărcării dispozitivului de stocare a energiei electrice, care, pentru a-și asigura propulsia mecanică, preia energie din ambele surse de energie stocată cu care este prevăzut vehiculul.

În perioada modernă, în 1969, Mercedes Benz (numit atunci Daimler-Benz AG) a prezentat Mercedes-Benz OE 302 ca primul autobuz de tranzit urban cu acționare hibridă la Salonul Auto Internațional. Motorul cu curent continuu a obținut o putere de 115 kW (156 CP) și o performanță de maxim 150 kW (204 CP) la viteze reduse. Motorul vehiculului era alimentat din cinci blocuri de baterii cu 189 de celule montate sub plafon și avea tensiunea de funcționare totală de 380 volți și o capacitate de 91 kWh. Acest lucru permitea aproximativ 2,5 ore de funcționare pe rutele de servicii programate. Bateria cântărea 3,5 t. În plus, autobuzul avea un motor diesel cu patru cilindri, cu o capacitate de 3,8 litri și o putere de 48 kW (65 CP). Această unitate, era pornită la marginea orașului și operată constant pentru a economisi combustibil. O frână electrică era deja utilizată pentru a recupera energia.

Aceste tipuri de autobuze folosesc cel mai adesea o propulsie diesel-electrică și sunt de aceea cunoscute sub denumirea de autobuze hibride diesel-electrice. Există însă pe piață și variante de hibride CNG-electrice. Prezența grupului de propulsie electrică are scopul de a obține o economie de combustibil mai bună decât un vehicul convențional sau o performanță mai bună. Multe autobuze hibrid electrice reduc emisiile inactive prin închiderea motorului la ralanti și repornirea când este nevoie (sistemul start-stop). Un hibrid electric produce mai puține emisii de la motorul cu ardere internă decât un vehicul de dimensiuni comparabile pe hidrocarburi, atunci când motorul termic este mai mic decât la un vehicul clasic sau nu este folosit pentru tracțiune directă.

Autobuzele hibrid electrice pot avea fie un sistem de propulsie în paralel, fie unul în serie.


La varianta în paralel, autobuzul poate fi propulsat fie de motorul diesel, fie de motorul electric, fie de ambele în comun. Dacă sunt îmbinate pe o axă (în paralel), vitezele la această axă trebuie să fie identice și cuplurile furnizate se adună. Atunci când numai una dintre cele două surse este în uz, cealaltă trebuie totuși să se rotească (inactiv). La sistemul paralel este semnificativă proporția în care este folosit un anumit mod de propulsie, unul dintre ele fiind

dominant - de regulă motorul termic. Hibrizii paraleli moderni folosesc frânarea regenerativă, care convertesc energia cinetică a vehiculului în energie electrică, stocată în baterii sau supercapacitori. Motorul cu ardere internă poate furniza prin intermediul unui generator electric curent pentru a-și reîncărca bateriile sau pentru a alimenta direct motoarele electrice de antrenare; această combinație este cunoscută ca un motor-generator. Această opțiune le face mai eficiente în condiții urbane cu opriri-porniri dese.

La propulsia în serie motorul termic antrenează un generator de curent electric care alimentează motorul electric (eventual și baterii de acumulatori), iar motorul electric acționează propulsia.

Transmisia electrică a fost disponibilă ca o alternativă la transmisiile mecanice convenționale încă din 1903. Transmisiile mecanice tipice impun mai multe restricții, inclusiv greutatea, volumul, zgomotul, costul, complexitatea și o scurgere a puterii motorului cu fiecare schimbare a treptelor de viteză, indiferent dacă este realizată manual sau automat. Spre deosebire de motoarele cu ardere internă, motoarele electrice nu necesită o transmisie. De fapt, întreaga transmisie mecanică dintre motorul termic și roți este eliminată și înlocuită cu un generator electric, cu unele cabluri și comenzi și cu motoare electrice de tracțiune. Aceasta este o dispunere hibridă în serie, la fel ca la locomotivele și navele diesel-electrice.

Argumentele privind flexibilitatea sporită, eficiența mai ridicată și emisiile reduse la punctul de utilizare au sens într-un sistem hibrid serie pentru vehicule rutiere atunci când între generatorul electric și motoarele de tracțiune electrică se află o baterie electrică intermediară care acționează ca un buffer de energie. În acest caz, motorul termic se transformă în generator și nu este conectat mecanic la roțile motrice. Astfel, motorul funcționează în mod constant la cea mai eficientă turație. Deoarece puterea principală a motoarelor este generată de baterie, se poate monta un generator / motor mai mic decât pentru varianta în paralel. Motoarele electrice de tracțiune pot primi energie electrică de la baterie sau direct de la motor / generator sau de la ambele.

Motoarele de tracțiune sunt frecvent alimentate numai de bateria electrică, care poate fi încărcată și din surse externe, cum ar fi rețeaua electrică. Acest lucru permite unui vehicul cu motor // generator să funcționeze numai atunci când este necesar, cum ar fi atunci când bateria este epuizată sau pentru încărcarea bateriilor.

Flote de autobuze hibride pentru transport public în Europa

Nenumărate orașe din Uniunea Europeană au recurs la utilizarea autobuzelor hibride de toate tipurile în încercarea de a reduce poluarea și de a oferi un aer mai curat locuitorilor lor.

Austria, Viena

Bulgaria, Pleven

Danemarca, Copenhaga

Franța, Paris

Belgia, Bruxelles

Cehia, Praga

Finlanda, Helsinki

Germania, Lübeck

Norvegia, Oslo

Spania, Barcelona

Ungaria, Budapesta

Marea Britanie, Bath

Suedia, Goteborg

1.1 Obiectivul de investiții

La nivelul municipiului București, programul de transport se realizează la acest moment utilizând următoarele tipuri de mijloace de transport: autobuze diesel (Euro 3 și Euro 4), tramvaie și troleibuze.

Prima linie de troleibuz din București a fost înființată după terminarea celui de-al Doilea Război Mondial, în ziua de 10 noiembrie 1949. Această primă linie funcționa între capătul Piața Victoriei și capătul Hipodrom (Piața Presei Libere sau Piața Scânteii pe vremea comunismului). Linia era deservită de troleibuze construite în fosta URSS, de tip MTB-82 D. În anul 1956, rețeaua de troleibuze a fost extinsă cu linia 81, ce urma aproape același traseu cu prima linie inaugurată, dar ulterior traseul a fost extins la Gara de Nord și la Aeroportul Băneasa.

De asemenea, în 1956 au mai fost date în folosință și liniile 82 și 83 care treceau prin zona Pieței Universității, asigurând o legătură între Aeroport și Piața de Flori. În anul 1957, a fost înființată axa est-vest, ce trecea pe la Piața Universității. Această parte din rețea fiind și cea mai veche din București, linia 85 fiind cel mai vechi traseu ce încă mai există în exploatare.

În anii '70, traseele și stațiile de troleibuz le permiteau călătorilor să circule din orice punct al orașului către altul, fără a fi nevoiți să circule pe jos sute de metri sau chiar kilometri. Odată cu schimbarea regimului comunist, după 1989, rețeaua de troleibuze nu a cunoscut dezvoltarea ce a fost anunțată odată cu anul 1990, astfel încât, în momentul actual, în exploatare mai sunt 15 linii de troleibuz, deservite de 4 depouri. Aceste linii fac legătura între periferia orașului cu centrul, oamenii neavând posibilitatea de a circula în tot orașul cu troleibuzul, legăturile existente pe perioada regimului comunist nu mai fiind de actualitate.

De-a lungul anilor, rutele de troleibuze din București au fost deservite de vehicule de origini și caracteristici diferite, precum modelele MTB-82 D de origine sovietică, mai apoi, în anii '50, deservite de către troleibuzele de producție românească, fiind astfel și primele produse în România, TV2E, urmate de modelele TV20E, în 1967, de asemenea produse local. Apoi, începând cu anul 1975 au fost introduse modele DAC 112E ROMANIA, cunoscute și ca ROMAN 112E. Anul 1979 fiind momentul în care au fost introduse troleibuzele articulate DAC 117E. După 1990, parcul de vehicule a fost reînnoit, astfel singurele troleibuze ce mai circulă fiind Astra/Ikarus 415T, Astra/Irisbus Citelis, Rocar 412EA și Rocar 812EA Autodromo (cele două din urmă momentan fiind retrase din circulație).

În România, interesul municipalităților pentru autobuze hibride a început să se manifeste odată cu preocuparea crescândă la nivel european și național privind reducerea poluării în orașe, coroborată cu apariția fondurilor nerambursabile alocate pentru mijloacele de transport mai ecologice.

Cu toate acestea, autobuzele hibrid nu sunt încă folosite în transportul zilnic de călători. Societățile locale de transport public de călători din diferite orașe ale țării și-au manifestat însă deschiderea pentru integrarea acestor mijloace de transport mai puțin poluante, prin testarea unor unități pe străzile orașelor și prin introducerea acestora pe liniile uzitate în transportul zilnic. Astfel, orașele care au testat până acum autobuze hibrid sunt: București, Satu Mare, Pitești, Galați, Iași, Oradea, Brăila.

În cadrul acestor teste, autobuzele au provenit de la producători diferiți, precum Mercedes-Benz și Solaris. Prin testarea acestor autobuze hibrid se urmărește reducerea consumului de combustibil convențional și de asemenea reducerea poluării în orașe. În plus, introducerea acestor autobuze hibrid contribuie și la sporirea confortului resimțit de pasageri și locuitori, întrucât aceste vehicule sunt mai silențioase și au un confort interior sporit.

Ca urmare mai multe municipalități au demarat realizarea de studii de oportunitate care recomandă achiziția de autobuze hibride, unele dintre acestea fiind deja finalizate și aprobate prin hotărâri ale Consiliilor Locale: Baia Mare (mai 2018, 19 autobuze hibride de 12m și 9 de 18m), Oradea (octombrie 2018, 10 autobuze hibride), Satu Mare (august 2018, 15 autobuze de 12m și 5 autobuze de 18m), Târgoviște (martie 2018, 40 autobuze hibride), Zalău (ianuarie 2018 20 de autobuze electrice sau hibrid-electrice).

Alte municipalități au luat decizia de achiziție din fonduri proprii, fără a avea la bază studii de oportunitate - Galați (mai 2018, 50 autobuze hibrid), prin Hotărârea Consiliului Local nr. 270 din 31 mai 2017.

Conform H.G. nr. 2139/2004, durata normală de funcționare la tramvaie este de 14 ani, iar la troleibuze și autobuze de 8 ani. La data de 31.12.2016, conform raportului de activitate al RATB pe anul 2016, parcul din dotare avea o vechime medie după cum urmează: 19,4 ani la tramvaie, 13,9 ani la troleibuze și 9,4 ani la autobuze.

Având în vedere starea precară a flotei utilizate în transportul public de călători și în concordanță cu prevederile Planului de Mobilitate Urbană Durabilă (PMUD) 2016-2030 elaborat pentru regiunea București – Ilfov, Primăria Municipiului București s-a angajat să achiziționeze și să îmbunătățească flota și infrastructura de mijloace de transport.

Pentru marile orașe, un criteriu de apreciere a dotării cu mijloace de transport în comun este numărul acestora raportat la un milion de locuitori. Acest parametru are valori cuprinse între 500-2000 de unități de transport (autobuze, troleibuze, tramvaie) la un milion de locuitori. Pentru București valoarea acestui parametru este de 700 unități la un milion de locuitori, deci se situează spre limita inferioară. În consecință, este necesară completarea parcului de vehicule cu un număr mai mare de unități, modern și mai puțin poluante.

Obiectivul general al investiției este îmbunătățirea calității aerului prin reducerea emisiilor de gaze cu efect de seră, urmare a utilizării autovehiculelor mai puțin poluante în transportul public local de persoane.

Obiectivul specific al investiției constă în dotarea cu mijloace de transport noi, mai puțin poluante a flotei de mijloace de transport care operează pe traseele din Municipiul București.

Studiul de Oportunitate analizează soluțiile pentru îmbunătățirea sistemului de transport public din București și reînnoirea flotei, în vederea îmbunătățirii calității aerului prin reducerea emisiilor de gaze cu efect de seră, urmare a utilizării autovehiculelor mai puțin poluante în transportul public local de persoane.

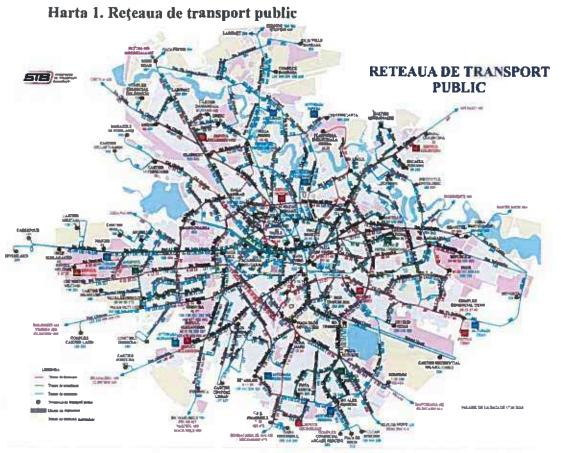
În acest sens, municipalitatea a demarat o serie de activități pentru creșterea atractivității transportului în comun și încurajarea cetățenilor de a renunța la transportul cu autovehiculele personale pentru a reduce poluarea, precum și congestiile din trafic. Aceste activități presupun demersuri achiziția de mijloace de transport noi, mai puțin poluante pentru Municipiul București.

Astfel, prin HCGMB nr. 394/21.12.2016 s-a aprobat achiziționarea de către Municipiul București a unui număr de 400 de autobuze urbane (320 de autobuze din gama de 12 m, 50 de autobuze din gama de 10 m și 30 de autobuze articulate din gama de 18 m) și a 100 de troleibuze din gama de 12m. Municipalitatea a încheiat în 2018 contractul pentru achiziția celor 400 autobuze Euro 6, urmând ca un prim lot de 100 să ajungă în București până la finalul anului 2018, iar restul autobuzelor (300) ce fac obiectul contractului să fie livrate până la sfărșitul anului 2019. Privitor la investițiile în parcul de troleibuze, până în prezent acestea nu s-au concretizat.

prin HCGMB nr. 225/19.04.2018 s-a aprobat Studiul de oportunitate "Achiziționare tramvaie și echipamente necesare îmbunătățirii transportului public de călători pe liniile 1, 10, 21, 25, 32, 40, 41 și 55", studiu care propune achiziționarea de către Municipiul București a unui număr de 100 de tramvaie din gama de până la 36 m. Urmare a acestui studiu, Primăria Municipiului București a depus 8 cereri de finanțare pentru achiziția a 100 de tramvaie în cadrul apelului de proiecte POR/2017/3/3.2/1/BI aferent Programului Operațional Regional 2014-2020, axa prioritară 3, prioritatea de investiții 4e, Obiectivul Specific 3.2. - Reducerea emisiilor de carbon în zonele urbane bazată pe planurile de mobilitate urbană durabilă. Proiectele se află în curs de evaluare.

Totodată, prin HCGMB nr. 376/20.06.2018 s-a aprobat Studiul de oportunitate "Achiziționare autobuze electrice necesare îmbunătățirii transportului public de călători pe 14 trasee în Municipiul București" și pe baza acestuia Primăria Municipiului București a depus 4 proiecte pentru achiziția a 100 autobuze electrice ce vor circula pe 14 trasee care tranzitează centrul capitalei.

Din punct de vedere al costurilor reduse de exploatare, precum și al nivelului minim de emisii poluante, cele mai eficiente mijloace de transport la nivelul municipiului București sunt tramvaiele și



troleibuzele, capitala beneficiind de o infrastructură extinsă pentru funcționarea acestora. Cum parcul de troleibuze nu a mai beneficiat în ultimii ani de achiziții și toate cele 302 autovehicule din actualul parc al RATB au durata normală de viață depășită, este oportună și necesară demararea activităților pentru înnoirea parcului.

Pentru a reduce poluarea din Municipiul București, prin acest studiu se propune achiziționarea a 100 troleibuze cu autonomie și 130 autobuze hibrid care vor fi utilizate pentru transportul public de călători.

1.2 Localizarea proiectului

Aria de studiu pentru elaborarea studiului de oportunitate este Municipiul București, având în vedere rețeaua de mijloace de transport extinsă pe toată suprafața orașului și influența pe care o are modernizarea flotei de mijloace de transport asupra întregului trafic din capitală și din zonele înconjurătoare, precum și impactul asupra mediului.

Transportul public de călători din regiunea București-Ilfov este asigurat de Societatea de Transport București STB SA (operator public de tramvai, troleibuze și autobuze care acoperă zona București și unele linii regionale), de METROREX (companie de transport subteran), sub coordonarea Ministerul Transporturilor, și de aprox. 50 de operatori privați de transport cu autobuzul (rute regionale și municipale).

Municipiul București este capitala țării și cel mai mare oraș din România, cu o populație oficială de 1.883.425 locuitori în 2011.

Operatorul intern RATB a trecut printr-un proces de reorganizare și transformare din regie autonomă în societate comercială.

Prin Hotarårea nr. 55/22.02.2018 a Consiliului General al Municipiului București s-a aprobat reorganizarea Regiei Autonome de Transport București prin schimbarea formei juridice din regie autonomă în societate pe acțiuni cu denumirea Societatea de Transport București – STB SA, ținând cont de prevederile Regulamentului (UE) nr. 1370/2007 privind serviciile publice de transport feroviar și rutier de călători și în conformitate cu Studiul de Oportunitate elaborat de Autoritatea Municipală de Reglementare a Serviciilor Publice.

Acționarii STB sunt Municipiul București prin Consiliul General al Municipiului București cu o participare de 99,9% din capitalul social și Județul Ilfov prin Consiliul Județean Ilfov cu o participare de 0,1%.

Capitalul social inițial al STB SA este de 129.200.000 lei din care aprox. 29 mil lei aport în natură și aprox. 100 mil lei aport în numerar.

Ca parte din strategia pe termen scurt de implementare a Planului de Mobilitate Urbană Durabilă București-Ilfov 2016-2030 și ca necesitate de conformare cu prevederile Regulamentului 1370/2007 și cu legislația națională, derivă oportunitatea încheirii unui Contract de delegare a gestiunii serviciilor de transport public de călători prin atribuire directă. În acest sens, în data de 17.09.2018 a fost semnat contractul de delegare a gestiunii serviciului de transport public local de călători.

Contractul de servicii publice a fost încheiat, în regim de urgență și pentru o perioadă de doi ani, între operator și Asociația de Dezvoltare Intercomunitară pentru Transport Public București – Ilfov (ADTPBI), constituită în octombrie 2017 ca asociere a tuturor celor 42 de autorități locale ale regiunii București – Ilfov, cu următoarele responsabilități:

□ Coordonează implementarea PMUD-BI 2016-2030 și actualizează planul ori de câte ori este necesar;

□ Elaborează planul integrat de transport și circulație la nivelul regiunii pentru transportul public de călători și monitorizează implementarea lui;

□ Asigură integrarea tarifară și introducerea sistemelor moderne de e-ticketing și management de trafic și transport;

Elaborează norme, proceduri, standarde pentru toate tipurile de transport ținând cont de practicile europene și noile tehnologii;

□ Încheie contractele cu operatorii de transport public de călători și monitorizează realizarea acestor contracte și a indicatorilor de performanță;

Asigură monitorizarea transportului;

- Efectuează plățile compensatorii către operatori și urmărește eficientizarea cheltuielilor publice;
- Urmărește implementarea proiectelor de investiții;
- □ Coordonează înființarea unui centru de instruire, formare și dezvoltare profesională pentru lucrătorii din domeniu.

Contractul acoperă serviciile prestate cu autobuze, tramvaie și troleibuze pe teritoriul administrativ al Municipiului București și serviciile prestate cu autobuze pe o parte din traseele Județului Ilfov, conform programului de transport.

Beneficiarul investiției este Primăria Municipiului București.

Troleibuzele și autobuzele hibrid achiziționate se vor da spre exploatare operatorului de transport public de călători Societatea de Transport București STB SA.

Începând cu luna ianuarie 2019, ADTPBI va începe procedura de contractare a operatorului intern regional pe o perioadă de 10 ani, în conformitate cu prevederile Regulamentului 1370/2007. În acest sens a fost publicat în JOUE Anunțul de informare prealabilă privind un contract de servicii publice - publicat în Suplimentul S6 la Jurnalul Oficial al Uniunii Europene.

Contractul de atribuire directă urmează a se încheia pe o perioada de 10 ani pentru realizarea serviciului de transport public de călători în regiunea București –Ifov pentru un program de transport de aproximativ 95 mil. km pe an.

Prezentul studiu de oportunitate a fost elaborat de o echipă mixtă de experți din cadrul Asociației de Dezvoltare Intercomunitară pentru Transport Public București - Ilfov și Societății de Transport București STB SA.

2. Analiza situației existente

2.1 Caracteristicile infrastructurii

Regiunea București – Ilfov beneficiază de o rețea extinsă de infrastructură pentru transportul public multi-modal, dar una care a avut de suferit de-a lungul anilor din cauza lipsei finanțărilor pentru mentenanță sau investiții și care este afectată de separarea rigidă între modurile de transport, la anumite niveluri.

Suprafața totală a Regiunii București-Ilfov este de 1.821 km2, din care 13,1% reprezintă teritoriul administrativ al Municipiului București și 86,9% al județului Ilfov.

Municipiul București, capitala țării, este cea mai mare aglomerare urbană din România, populația să fiind, conform Recensământului populației din 2011, de 1.883.425 (o densitate de aproximativ 8.160 locuitori/km2), ceea ce reprezintă circa 9% din populația totală a României și peste 17% din populația urbană a țarii. Conform INS la nivelul anului 2016 populația rezidentă a Bucureștiului înregistra 1.844.312 locuitori, cu mențiunea că, în contextul existenței unor oportunități economico-sociale deosebite, numărul real al populației care locuiește, lucrează sau învață în regiune este, în realitate, mai ridicat decât cel înregistrat oficial.

Bucureștiul are o rețea extinsă de transport public, dar în cele mai multe cazuri vehiculele nu au prioritate în trafic, ceea ce reduce viteza și eficiența sistemului; de asemenea, rețeaua nu primește îmbunătățirile necesare privind calitatea și infrastructura care ar face această opțiune mai atractivă pentru utilizatorii autovehiculelor personale.

Întregul sistem de transport cuprinde o rețea de trasee de 1592 km pe liniile urbane și o rețea de 132 km pe liniile preorășenești. Îmbarcarea și debarcarea călătorilor din mijloacele de transport este asigurată în cele 2117 stații de oprire, din care 220 stații de oprire comune (autobuz, troleibuz). Pentru traseele preorășenești sunt amplasate un număr de 213 stații de oprire. (cf Studiu Oportunitate Reorganizare RATB – AMRSP).

La nivelul întregii rețele de transport, prestația de transport public de călători a fost organizată în cursul anului 2016, conform raportului de activitate al RATB pe anul 2016, în cadrul a 8 autobaze și 7 depouri de tramvai, 3 depouri de troleibuze și 1 depou mixt, parcul total de vehicule fiind distribuit pe 155 trasee astfel: 26 linii de tramvaie, 120 linii de autobuze, din care 20 linii preorășenești, 16 linii de troleibuze și s-a concretizat în atingerea următorilor indicatori:

- 72.630.000 km realizați

- 438.562.000 călătorii efectuate (estimate în funcție de vânzarea de titluri de călătorie și de legitimațiile acordate beneficiarilor de gratuități)

		Tramvai	Autobuz	Trol-ibuz	TP lifer
Numār linii	4	26	100	16	20
Capacitate Vehicul [locuri]	1,200	200	50	50	16
Media plecărilor zilnice	452	3,447	10,813	3,255	3,578
Media capacității zilnice de serviciu [%]	27%	35%	27%	8%	3%
Lungimea traseului (km)	146	479	1,627	259	2,021
Media zilnică de Km vehicul	9,948	33,527	103,340	22,897	54,672
Media zilnică de ore vehicul	1,885	2,547	8,054	2,068	1,366
Începerea operării – dimineața	05:00	05:00	05:00	05:00	05:00
Finalizarea operării – seara	23:00	23:00	23:00	23:00	22:00
Tarif mediu Lei (o călătorie)	2	1.3	1.3	1.3	3
Număr mediu de pasageri, zilnic	624,191	489,706	885,428	198,028	40,000

Tabel	1.	Serviciile	asigurate	de	modurile de	transport	t public
-------	----	------------	-----------	----	-------------	-----------	----------

Sursa: PMUD

Lipsa de integrare între diferitele rețele poate fi identificată prin aspecte privind infrastructura stațiilor și a vecinătăților, structura tarifară diferită, lipsa înformațiilor pentru pasageri și segregarea serviciilor între București și Județul Ilfov. Un sistem comun de taxare a fost instituit între serviciile metroului și RATB (tramvai, troleibuz și autobuz) în anul 2013, a fost întrerupt din nou în anul 2014 și reluat in 2017. Pasagerii sunt obligați să plătească transferuri pentru fiecare călătorie, în cazul în care nu folosesc sistemul de abonamente.

Activitatea principală a Societății de Transport București STB SA constă în asigurarea transportului public de persoane, pe raza Municipiului București și a Județului Ilfov, respectiv: organizarea rețelei de transport, programarea în circulație a vehiculelor pe trasee, analiza tehnică și statistică a exploatării, îndrumarea și controlul activității de circulație, a stării mobilierului stradal și a elementelor de informare a călătorilor.

Conform raportului de activitate al RATB pe anul 2017, în condițiile majorării rezervei de parc, ca urmare a derulării contractelor de aprovizionare cu reperele necesare repunerii în circulație a vehiculelor imobilizate temporar, pentru asigurarea condițiilor optime de transport pentru călători, parcul scos zilnic pe trasee a înregistrat o creștere cu aproximativ 12%, ajungând la sfârșitul lunii noiembrie la 1.294 vehicule (272 tramvaie, 177 troleibuze, 845 autobuze), față de cel programat la începutul acestui an, de 1.160 vehicule (249 tramvaie, 161 troleibuze, 750 autobuze).

Totodată, pentru o mai bună preluare a fluxurilor de călători, au fost dispuse măsuri de suplimentare a capacității de transport, care au constat în menținerea în circulație a vehiculelor, atât în perioada de maximă solicitare a vârfului de după-amiază, cât și între vârfuri pe întreaga perioadă a zilei. Punerea în

aplicare a acestor măsuri a condus la o creștere a ofertei de transport cu cca. 4,5 %, care s-a concretizat prin reducerea timpilor de așteptare în stații a utilizatorilor și a gradului de aglomerare în vehicule.

Troleibuze

Rețeaua de troleibuze reprezintă o parte minoră față de restul rețelei operate de RATB, cu 16 trasee și mai puțin de 100 km lungime totală, reprezentând 17% din serviciul RATB. Întreaga rețea este situată pe teritoriul Municipiului București. Rețeaua cuprinde câteva linii radiale și include o secțiune în centrul orașului. O a doua rețea, mai restrânsă, cuprinde trei linii pe distanțe scurte în zona periferică de sud-est.

Datele caracteristice ale traseelor ce constituie rețeaua de troleibuze sunt prezentate detaliat mai jos.

Linie de troleibuz	Depoul	Nr vehicule pe linie	Număr stații (tur+retur)	Lungime cursă /km	Total km traseu	Total km (a+r)	Total Km (zi lucru)	Viteza com. medie Km/h	Nr mediu îmbarcări/h/	Uurata cursa minute	Interval min succedare la oră do vârf	Marca Troleibuz
61	Bujorenî	6	43	19.5	877.5	126	1003.5	14.1	372	91	25	IRISBUS/IKARUS
62	Bujoreni	10	44	18.6	1581	249	1830	12.4	556	100	10	IRISBUS/IKARUS
65	B.Noi	11	40	13.2	1934	80.6	2014.4	13.66	920	66	6	IKARUS
66	V.Luminoasa	15	37	18.8	2295	251.9	2546.5	8. 9 4	811	112	7	IRISBUS/IKARUS
69	Bujoreni	23	56	26.4	3564	150	3714	13.89	935	132	6-7	IRISBUS
70	V.Luminoasa	13	44	17.8	2100	268.8	2369.2	14.24	796	85	7-8	IRISBUS/IKARUS
73	Berceni	9	29	12.9	1290	73.8	1363.8	11.73	726	76	7-9	IKARUS
74	Berceni	9	31	13.7	1247	77.2	1323.9	11.74	690	80	8-9	IKARUS
76	Berceni	16	29	14.4	2614	175.6	2789.2	12	1414	82	5-6	IKARUS
79	Bucureștii Noi /V.Luminoasa	8	48	19.4	1261	179.7	1440.7	12.13	432	104	12-15	IRISBUS/IKARUS
85	V.Luminoasa	9	35	15.2	1384	148.8	1532.4	12.85	652	79	8-9	IRISBUS/IKARUS

Tabel 2. Situație linii troleibuz

ADTPBI

86	Bucureștii Noi / V.Luminoasa	19	69	24.6	3223	308.4	3531	14.76	907	110	6-8	IRISBUS/IKARUS
90	V.Luminoasa	8	63	27.2	1198	135	1332.8	14.57	300	130	18-20	IRISBUS/IKARUS
91	Bujoreni	4	40	19.1	638.6	95.5	734.1	14.69	273	86	25-30	IRISBUS/IKARUS
93	Bujoreni	9	34	15.6	1435	55	1490.2	15.6	715	70	8-10	IRISBUS/IKARUS
96	Bujoreni	12	33	15.8	1807	254.8	2061 .6	10.3	673	100	6-8	IRISBUS/IKARUS
TOT	AL: 16 linii	181	675	292.2	28447	2630	31077					

Sursa: STB

Flota de troleibuze este formată din 197 de vehicule cu podea înaltă, 100 de troleibuze cu podea joasă și nici un troleibuz articulat. Pe lângă acestea, 3 troleibuze sunt școală. Ca tipologie, majoritatea parcului este constituit din troleibuze ASTRA (100 Astra IRISBUS și 195 ICARUS 415 T), la care se adaugă 2 troleibuze Rocar. Vechimea medie a parcului este de 13,9 ani.

Rețeaua electrică este de tip convențional cu fixare rigidă și unghiuri abrupte la macazuri, permițând în general viteze moderate și forțând troleibuzele să încetinească în fața macazurilor, În ciuda activităților de reabilitare din trecut, infrastructura curentă a troleibuzelor (cabluri aeriene - OHC) necesită modernizarea și reînnoirea componentelor. Cu toate acestea, aprovizionarea cu energie este suficientă pentru un număr de două ori mai mare decât numărul de tramvaie și troleibuze ce funcționează în prezent.

Sistemul de troleibuze include 3 depouri exclusiv pentru troleibuze (Bujoreni, Berceni și Vatra Luminoasă) și un depou mixt pentru tramvaie și troleibuze (Bucureștii Noi). Capacitatea totală este de 404 vehicule.

Autobuze

Situația existentă în ceea ce privește rețeaua de autobuze pe teritoriul administrativ al Municipiului București.

Rețeaua convențională de autobuz cuprinde 69 de trasee pe teritoriul Municipiului București, 2 expres (asigură legătura cu Aeroportul Otopeni) și 4 linii de navetă, care înlocuiesc liniile de troleibuz sau tramvai, precum și 26 de trasee de noapte (inclusiv 1 linie expres cu program nocturn). Rețeaua cuprinde liniile radiale, tangente și orbitale și acoperă majoritatea orașului, deservind toate cartierele.

Sistemul de transport public cu autobuzul este constituit din infrastructură (care este aceeași cu cea rutieră), stații și mijloace de transport aferente.

Un număr de 8 autobaze asigură activitățile de întreținere și mentenanță (Titan, Ferentari, Obregia, Alexandria, Pipera, Nordului, Floreasca, Militari), având o capacitate totală însumată de 1.240 de vehicule.

Flota de autobuze numără 1.147 de vehicule de 12 metri (capacitate aprox 100 călători), din care pare scos zilnic 807 autobuze la nivelul lunii aprilie 2017.

Flota de autobuze este modernă având 500 de autobuze Mercedes-Benz Citaro euro 3, 500 de autobuze Mercedes-Benz Citaro Euro 4, toate cu podea joasă și jumătate dintre ele cu aer condiționat. În plus, în parcul de vehicule se mai regăsesc 62 autobuze DAF SB 220, 80 autobuze ROCAR U 412, 3 lveco FIAT și 2 lKARUS 260 acestea fiind imobilizate.

Vechimea medie a parcului de autobuze Mercedes-Benz Citaro este de 9,4 ani.

Îmbarcarea și debarcarea călătorilor din mijloacele de transport este asigurată în 2117 stații, din care 220 stații comune autobuz/troleibuz.

Parametrii tehnici ai infrastructurii și mijloacelor de transport

A. Troleibuze

Infrastructura de troleibuz utilizată de mijloacele de transport din dotare pe cele 16 trasee existente presupune utilizarea infrastructurii rutiere și a liniei de contact.

Soluția constructivă a liniei de contact este una clasică, realizată în două variante:

- cu console simple sau duble din teavă de oțel zincat Φ 60 mm şi traversee cu sârmă de oțel zincat Φ 6 mm cu lanţuri electroizolante;
- în soluție catenară longitudinală cu cablu portant nepus sub tensiune. Firul de contact este din cupru, cu secțiunea de 100 mmp, susținut de cablul portant prin triunghiuri de susținere. În dreptul consolelor oblice confecționate din țeavă oțel 60x4, firul de contact este prins de acestea cu buclă gama.

Cele mai recente modernizări ale liniei de contact au fost realizate în anul 2008 și doar pe anumite porțiuni, în rest efectuându-se reparații locale de înlocuire a firului de contact cauzate de uzură. Alimentarea cu energie electrică a rețelei de contact se realizează din substațiile electrice de tracțiune de pe traseu.

Stâlpii de susținere ai rețelei de contact sunt amplasați pe trotuare, o parte sunt stâlpi de beton centrifugat tip SF8-11 și o parte sunt stâlpi metalici tubulari 8tfm.

Modernizarea rețelei de alimentare nu este necesară, eventuale reparații/înlocuiri se vor realiza în cadrul procesului de întreținere și reparații.

Infrastructura rutieră aparține, după caz, domeniului public al Municipiului București sau primăriilor de sectoare. Aceasta este în stare tehnică relativ bună, însă anumite porțiuni prezintă o degradare semnificativă a suprafeței de rulare constând în denivelări și chiar gropi.

Pe anumite porțiuni, mijloacele de transport beneficiază de bandă dedicate, ceea ce conduce la creșterea vitezei comerciale. Situația benzilor dedicate pe traseele actuale este prezentată în tabelul 4.

Artera	Tronsonul cuprins între :	Sensul	Linia de troleibuz
Bd. Regina	Cal. Victoriei – P-ța M.	Ambele	61, 66, 69, 70, 85, 90, 91
Elisabeta	Kogălniceanu	sensuri	
Bd. M.	P-ța M. Kogălniceanu – Piața	Ambele	61, 66, 69, 70, 85, 90, 91
Kogălniceanu	Operei	sensuri	
Bd. Dacia	Calea Moșilor-Calea Dorobanți	Piața Romana	86, 79 este sens unic pt. transport public

Tabel 3. Situație actuală benzi dedicate pe trasee troleibuze

Semnalizarea traficului încă nu asigură prioritate completă pentru troleibuze, iar sistemele de informare în timp real a pasagerilor lipsesc, lăsând pasageril fără orar de funcționare sau informații privind traseul.

Parcul de troleibuze

Pe cele 16 trasee existente în prezent circulă troleibuze marca IKARUS și IRISBUS, cu următoarele date caracteristice/tehnice (prezentate succint):

Date tehnice IKARUS

Tipul		415.80T
Masa vehiculului gol de agregate	±50 kg	10.500
Masă de încărcătură utilă	kg	7.208
Totalul masei în mișcare	kg	17.708
Sarcina pe osie - față	kg	6.800
- spate	kg	10.908
Numărul persoanelor pe scaune	loc	26
Numārul permis al persoanelor în p	icioare loc	80
Numărul persoanelor de deservire		
- conducătorul (șo	ferul) loc	1

ADTPBI Contractor

Caracterisitici tehnice IRISBUS

- Lungime totalā 12000 mm.
- Înălțimea de la sol (cu captatori retrași) 3545 mm.
- Lāțime 2500 mm.
- Suprafața utilă călători în picioare 9,25 m².
- Masa proprie 12110±3% kg.
- Masa totalā autorizatā 19500 kg.
- Maxim tehnică admisibilă pe axa față 7245 kg.
- Maxim tehnică admisibilă pe axa spate 12600 kg.
- Sarcina utilă (la 104 călători cu 8 călători/m²) 7072 kg.

NR.CRT.	MARCA	PARC DISPONIBIL
1	ROCAR 412	1
2	ROCAR 812	1
3	ASTRA IKARUS	200
4	ASTRA IRISBUS	100
	TOTAL TROLEIBUZE	302

Tabel 4. Parc troleibuze

Sursa: STB

Flota de troleibuze nu a beneficiat de achiziții noi în ultimii ani. Troleibuzele utilizate în prezent au un grad mare de uzură și necesită activități de mentenanță, unele fiind imobilizate din cauza lipsei pieselor de schimb.

Imagini cu modelele de troleibuze utilizate în prezent

ADTPBI

ASTRA IKARUS

B. Autobuze

Autobuzele reprezintă unul dintre cele mai importante moduri de transport, reprezentând 61% din serviciile RATB. Infrastructura dedicată benzilor cu prioritate pentru autobuze și troleibuze este limitată, cu mai puțin de 7 km de cale proprie în centrul orașului și extrem de fragmentate, așa cum ilustrează harta de mai jos. Chiar și în aceste cazuri, utilizarea exclusivă a benzilor numai de către serviciul de transport public nu este pusă în aplicare și conducerea sau parcarea vehiculelor private dea lungul lor este un fenomen comun.

Harta 2. Benzi dedicate autobuze

Infrastructura utilizată de mijloacele de transport în comun care circulă pe traseele vizate de prezentul studiu este comună cu cea rutieră, porțiunile de bandă dedicată pentru acestea fiind foarte reduse.

Sunt necesare măsuri pentru a da o prioritate mai mare autobuzelor în trafic, separarea fizică și/sau controlul semnalelor de trafic. Se poate, de asemenea, să se ia în considerare introducerea unor servicii de calitate autobuz rapid pe bulevardele mai late, fie prin modernizarea liniilor existente sau desfășurarea de noi linii. Semnalizarea traficului încă nu asigură prioritate completă pentru autobuze, iar sistemele de informare în timp real a pasagerilor lipsese, lăsând pasagerii fără orar de funcționare sau informații privind traseul.

Parcul RATB de autobuze este de 1147 unități, dín care 1000 de autobuze sunt de tipul Mercedes Euro 3 și Euro 4. Pe lângă acestea 1000, dintre care doar 909 sunt active (434 Euro 3 și 475 Euro 4), RATB mai deține: 2 autobuze marca IKARUS 260, 60 autobuze marca DAF SB 220, 2 autobuze marca DAF SB 220 LPG, 1 autobuz marca ROCAR U812, 79 autobuze marca ROCAR U412-260 și 3 autobuze marca IVECO. Acestea au fost scoase din circulație, întrucât în cazul multora lipsesc piesele de schimb necesare pentru a fi repuse în funcțiune, precum și din cauza gradului foarte mare de uzură și a perioadei de viață depășite.

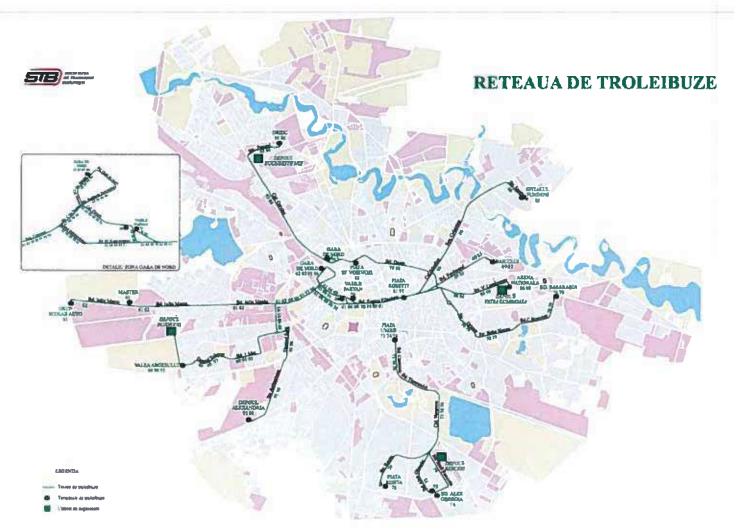
	er 5. Fare au	COLO GLE						
Nr. crt	Marcă autobuz		Nr. autobuze inventar la data de 01.01.2018	Perioada intrare în exploatare RATB (an)	Grad uzură (ani)	Rulaj mediu (km)	Observații	
1		ROCAR U412	79	1995 - 2000	18 - 23	647.953	scoase din circulație cu	
2		ROCAR U812]	2001	17	575.595	aprobare pentru	
3	Autobuze scoase din	DAF SB 220	60	1995 - 1998	20 - 23	827.527	valorificare în vederea	
4	circulație	DAF LPG	2	2000	18	147.876	dezmembrării	
5		IK-206.50	2	1993	25	581.819		
6		Iveco	3	2006	12 ani RATB	168.536	(lveco an fabricație 1991)	
7		Mercedes Euro 3	400	2006	12	558.368	Medie Euro 3	
	Pare	Mercedes Euro 3	100	2007	11	523.821	551459 km	
	disponibil autobuze		Mercedes Euro 4	20	2007	11	484.325	
8	Mercedes	Mercedes Euro 4	330	2008	10	495.328	Medie Euro 4 493188 km	
		Mercedes Euro 4	150	2009	9	489.661		
9	Total inventor: 1147 autobuze		Mercedes 1000 autobuze			522.323	522.323	

Tabel 5. Parc autobuze

Sursa: STB

Deși flota de autobuze a beneficiat de achiziții noi în perioada 2006 - 2009 (cele 1000 autobuze Mercedes Euro 3 și 4), chiar și aceste îmbunătățiri vor ajunge în curând la sfărșitul duratei utilizabile de viață. Autobuzele utilizate în prezent necesită activități de mentenanță, o parte din ele sunt imobilizate din cauza lipsei pieselor de schimb și întreaga flotă funcționează cu alimentare diesel.

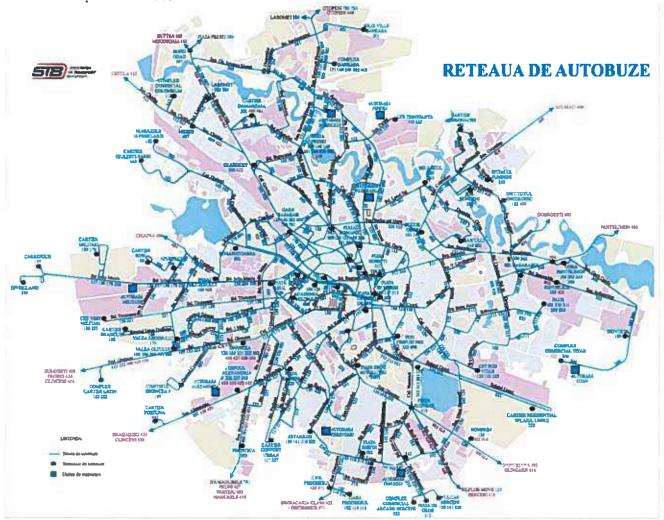
Marcă autobuz	Număr	Dimensiuni	Tehnologie	Alți parametri
MERCEDES EURO 3	500	11,95mx12,55m (h=3,056m)	Podea Joasă	Cu trapă pentru scaun cu rotile AC în salon (13 unități) AC la șofer (500 unități)
MERCEDES EURO 4	500	11,95mx12,55m (h=3,056m)	Podea Joasă	AC în salon (500 unități) AC la șofer (0 unități)


Tabel 6. Parametrii tehnici – autobuze

În concluzie, se poate afirma că starea tehnică a infrastructurii (atât linia de contact, cât și cea rutieră), deși precară pe anumite porțiuni, permite realizarea programului de transport, însă achiziția de troleibuze și autobuze hibrid noi este imperios necesară atât pentru reducerea poluării la nivelul Municipiului București, cât și pentru înnoirea parcului de mijloace de transport.

2.2 Traseele utilizate

Harta generală cu cele 16 trasee existente de transport public cu troleibuzul ce fac obiectul studiului de oportunitate este prezentată mai jos. Totodată, pe hartă sunt evidențiate și depourile de garare ale troleibuzelor utilizate pentru îndeplinirea programului de transport.



Rețeaua de autobuz a STB la nivelul regiunii București – Ilfov la acest moment se întinde pe 124 linii, dintre care 21 sunt reprezentate de cele preorășenești.

Harta generală cu traseele de transport public cu autobuzul existente la nivelul Municipiului București este prezentată mai jos.

Sursa: STB

Având în vedere contractul de delegare a gestiunii serviciului de transport public semnat între operatorul de transport și ADTPBI, de la 1 decembrie 2018 va intra în vigoare **Programul integrat de transport public de călători** care va acoperi Regiunea București – Ilfov și care a fost elaborat pe baza recomandărilor menționate în Planul de Mobilitate Urbană Durabilă București – Ilfov 2016-2030. Informații relevante din programul integrat de transport sunt evidențiate mai jos:

MOD TRANSPORT	Nr. LINII
Tramvaie	26
Troleibuze	16
Autobuze	170
din care:	
Trasee urbane	73
Trasee EXPRES + BCT	4
Trasee de noapte	26
Trasee regionale	67
TOTAL	212

LINII TROLEIBUZ

				Nr.
Nr. crt.	INDICATIV LINIE	TRASE	U	KM. CURSĂ
1	61	MASTER S.A	PIAȚA ROSETTI	19,50
2	62	GARA DE NORD	GRUP ŞCOLAR AUTO	18,60
3	65	DRIDU	SFINȚII VOIEVOZI	13,20
4	66	SPITALUL FUNDENI	VASILE PÂRVAN	18,80
5	69	VALEA ARGEŞULUI	BAICULUI	26,40
6	70	BD. BASARABIEI	VASILE PÁRVAN	17,80
7	73	TURNU MĂGURELE	PIAȚA UNIRII	12,90
8	74	BD. ALEXANDRU OBREGIA	PIAȚA UNIRII	13,70
9	76	ΡΙΑΫΑ REŞIŢA	PIAȚA UNIRII	14,40
10	79	BD. BASARABIA	GARA DE NORD	19,40
11	85	GARA DE NORD	BAICULUI	15,20
12	86	ARENA NAȚIONALĂ	DRIDU	24,60
13	90	ARENA NAȚIONALĂ	VALEA AREGEŞULUI	27,20
14	91	DEPOUL ALEXANDRIA	PIAȚA ROSETTI	19,10
15	93	VALEA ARGEŞULUI	GARA DE NORD	15,60

16	96	DEPOUL ALEXANDRIA	GARA DE NORD	15,80
----	----	-------------------	--------------	-------

LINII AUTOBUZ URBANE

Nr. crt.	INDICATHV LINIE	TRASEU		Nr. KM. CURSĂ
1	101	BUCUR OBOR	FAUR	17,00
2	102	BD. BASARABIA	GARA PROGRESUL	28,80
3	103	REPUBLICA	ISOVOLTA	8,30
4	104	CORA PANTELIMON	OPERA NAȚIONALĂ	23,50
5	105	VALEA OLTULUI	PLAȚA PRESEI	29,20
6	106	LUJERULUI	CARTIER ROŞU	8,40
7	112	CFR CONSTANȚA	COMPLEX COMERCIAL COLOSSEUM	29,20
8	116	PIAȚA SF. VINERI	GARA PROGRESUL	22,00
9	117	CARTIER CONFORT URBAN	PIAȚA SF. VINERI	15,20
10	122	PIAȚA 21 DECEMBRIE	COMPLEX CARTIER LATIN	23,80
11	123	GARA DE NORD	CET SUD VITAN	19,80
12	124	OPERA NAȚIONALĂ	ROMPRIM	21,40
13	125	VULCAN BERCENI	PECO SILFLOR MOVE	20,60
14	126	PIAȚA ROMANĂ	GHENCEA	18,90
15	131	PIAȚA ROMANĂ	COMPLEX COMERCIAL BĂNEASA	17,20
16	133	GARA BASARAB	BD. TINERETULUI	20,00
17	135	CFR CONSTANȚA	CET SUD VITAN	26,50
18	136	CET VEST MILITARI	POD IZVOR	24,50
19	137	CARREFOUR MILITARI	PIAȚA 21 DECEMBRIE	30,30

20	138	CARTIER MILITARI	PIAȚA 21 DECEMBRIE	28,70
21	139	ZEȚARILOR	PIAȚA LEUL	14,80
22	141	ZETARILOR	VULCAN BERCENI	20,80
23	143	BUCUR OBOR	BAICULUI	10,10
24	149	COMPLEX COMERCIAL BĂNEASA	PIAȚA PRESEI	15,60
25	162	GIULEȘTI SÂRBI	GARA BASARAB	15,90
26	163	GIULEȘTI SÂRBI	VASILE PÂRVAN	20,70
27	168	ΡΙΑΤΑ ROMANĂ	CARTIER CONSTANTIN BRĂNCUȘI	21,30
-28-	173	PIAȚA EROII REVOLUȚIEI	VALEA ARGEȘULUI	17,10
29	178	CARTIER MILITARI	SALA PALATULUI	28,30
30	182	GARA DE NORD	INSTITUTUL ONCOLOGIC	25,40
31	185	GHENCEA	CIMITIRUL GHENCEA 3	9,20
32	202	CORA PANTELIMON	CORA PANTELIMON	6,90
33	205	LAROMET	GARA DE NORD	28,50
34	216	GARA PROGRESUL	ZEȚARILOR	11,50
35	220	ΡΙΑΤΑ ΚΑΗΟΥΑ	VULCAN BERCENI	22,00
36	221	GHENCEA	CET VEST MILITARI	14,20
37	222	COMPLEX CARTIER LATIN	GHENCEA	10,20
38	223	CET SUD VITAN	CARTIER REZ. SPLAIUL	22,40
39	226	PIAȚA ROMANĂ	DEPOUL ALEXANDRIA	19,60
40	227	DEPOUL ALEXANDRIA	CARTIER CONFORT URBAN	9,50
41	232	PLATFORMA COMERCIALĂ BERCENI	PIAȚA UNIRII	20,80
42	236	DIVERTILAND	SPITALUL UNIVERSITAR	25,10

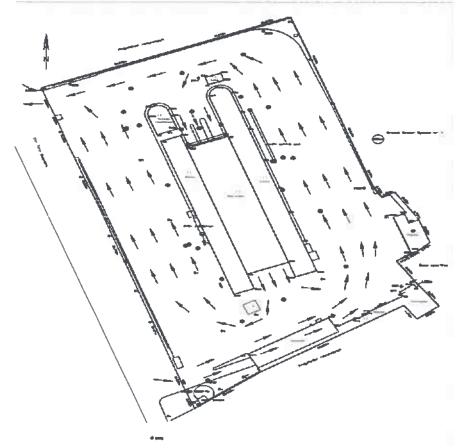
43	243	CORA PANTELIMON	BD. LACUL TEI	13,30
44	246	COMLEX RATB TITAN	CORA PANTELIMON	15,10
45	253	SPITALUL FUNDENI	FAUR	18,20
46	261	PLAȚA PRESEI	COMPLEX COMERCIAL BĂNEASA	17,90
47	268	VALEA OLTULUI	PIAȚA 21 DECEMBRIE	18,60
48	282	GARA BASARAB	ŞOSEAUA FUNDENI	28,00
49	300	BD. NICOLAE BĂLCESCU	CLĂBUCET	11,90
50	301	PIAȚA ROMANĂ	JOLIE VILLE BĂNEASA	24,60
51	302	GHENCEA	CARTIER FORTUNA	15,50
52	303	DEPOUL ALEXANDRIA	PECINIŞCA	5,80
53	304	PIAȚA PRESEI	LAROMET	32,40
54	311	FAUR	PIAȚA ROSETTI	19,50
55	312	PLAȚA DE GROS	PIAȚA UNIRII	18,90
56	313	TURNU MĂGURELE	PLAȚA SF. VINERI	16,00
57	323	UNIVERSITATEA CREȘTINĂ	ZEȚARILOR	12,40
58	327	ŞCOALA 141	ŞCOALA 127	3,30
59	330	FAUR	PLAȚA PRESEI	27,80
60	331	CARTIER DĂMĂROAIA	PIAȚA ROMANĂ	16,20
61	335	FAUR	COMPLEX COMERCIAL BĂNEASA	33,80
62	336	COMPLEX COMERCIAL APUSULUI	PIAȚA ROSETTI	17,20
63	362	PIAȚA PRESEI	PARCUL CAROL I	29,30
64	368	PIAȚA ROMANĂ	VALEA OLTULUI	20,20
65	381	PIAȚA REȘIȚA	PLAȚA VICTORIEI	22,40
66	385	VALEA OLTULUI	PIAȚA SF. VINERI	19,10

67	601	SEMĂNĂTOAREA POARTA	PIAȚA ROSETTI	13,00
68	605	COMPLEX COMERCIAL BĂNEASA	PIAȚA SF. VINERI	22,60
69	668	VALEA OLTULUI	POD COTROCENI	14,60
70	682	BAICULUI	ESCALEI	12,30
71	696	PROF. DR. RAINER	GARA BASARAB	7,50
72	697	MEZEŞ	CFR CENTURĂ	14,40
73	698	UNIVERSITATEA CREȘTINĂ	PIAȚA VICTORIEI - LINIA VERDE	14,70

2.3 Condiții de garare

Troleibuze

Troleibuzele din parcul de mijloace al STB sunt garate în patru depouri pentru a asigura implementarea planului de întreținere și reparații. Personalul din fiecare depou deține competențele necesare pentru operațiunile specifice mijloacelor de transport acționate electric. Depourile sunt dotate corespunzător cu echipamentele necesare desfășurării activităților de lucru.


Mai jos este detaliat fluxul tehnologic, împreună cu reprezentarea grafică a proceselor aferente fiecărui depou în care sunt garate troleibuzele.

Flux Tehnologic Vatra Luminoasă

1) Accesul troleibuzelor se face pe poarta 1

2) Retragerea troleibuzelor se face din strada Toni Bulandra pe poarta 2, după care intră în stația de spălat sau trece prin stânga stației de spălat, după care urmează traseul prin spatele halei de întreținere (culoar acces în hală). Intră în hala de întreținere (CIZ pe canalul 2, revizii RT1 și RT2 pe canalul 1, iar RCP pe canalul 3 unde există trapa acces motor tracțiune).

3) La ieșirea din hală, troleibuzele sunt parcate pe platforma de garare din fața și din spatele depoului.

Sursa: STB

Flux tehnologic Bucureștii Noi

La aceasta dată, activitatea de întreținere/reparații pentru troleibuzele din depoul Bucureștii Noi, se desfășoară astfel:

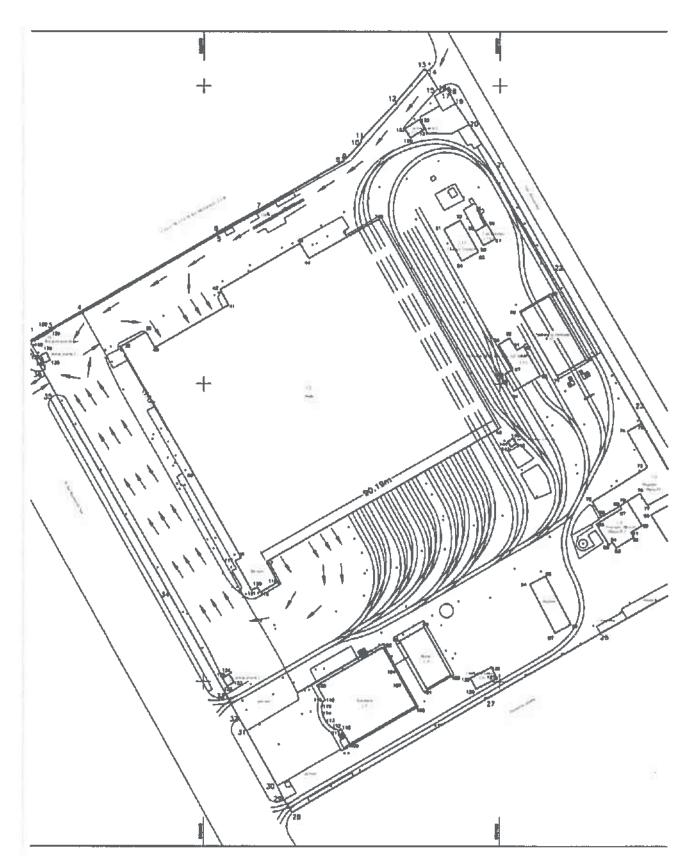
- Accesul în depou, se face în două variante:

1. <u>Intrare din str. Hrisovului</u>, în stația de spălare, unde se execută operații de spălare, curățare, igenizare la fiecare vehicul, conform programărilor; apoi acces direct în hala de control/întreținere zilnică, unde se execută verificări ale elementelor de siguranță a circulației, conform normativului; întreținerea se efectuează pe 2 canale de lucru; între cele 2 canale, se mai efectuează pe 2 linii paralele operații specifice de reparații accidentale și/sau lucrări la remediere caroserie; de asemenea, mai există canalul 3, cu jumătate de lungime (ptr. 4 troleibuze), pe care se execută operații specifice de lucru cu durata mai mare de lucru; tot în incinta acestei hale, este amplasat canalul de revizii, - RT 1, RT - 2 - prevăzut cu 2 instalații de ridicat vehicule, unde se execută revizia planificată și permite așezarea a 2 vehicule. Astfel, hala de întreținere permite atât lucrul, cât și gararea la un număr maxim de **28 vehicule**, așezate pe 4 rânduri paralele, câte 6 în fiecare rând, **4 vehicule pe canalul 3**, rezultă că în hală se pot gara un nr. maxim de **28 vehicule**.

2. <u>Intrare din b-ul Bucureștii-Noi</u>, permite accesul în hala CIZ, din ambele sensuri de circulație, cu desfășurarea acelorași operații, cu mențiunea că: în acest caz, intrarea vehiculelor se face în situații de defecte accidentale, din traseu, fără accesul prin stația de spălare.

După efectuarea lucrărilor, vehiculele ies din hală și sunt garate, funcție de orele de ieșire în traseu astfel:

- pe platforma de garare, paralelā cu b-ul Bucureștii-Noi, ce permite așezare în aliniament, pe 2 rânduri, câte 6 în fiecare rând, și pe un alt rând = 7 vehicule, total 19 vehicule.


- în fața halei de întreținere, pe 3 rânduri, câte 2 în rând, total 6 vehicule.

- în spatele halei, maxim 7 vehicule.

Rezultă un spațiu total de garare și manevre pentru 60 vehicule.

- <u>lesirea în traseu</u>, se face în funcție de: ora de ieșire, liniile (traseele) deservite precum și parcul programat să iasă în traseu, ținând cont de aceste aspecte, vehiculele sunt așezate (garate) astfel:

- de pe platforma de garare, în b-ul Bucureștii-Noi sens Dridu(cartier Pajura).

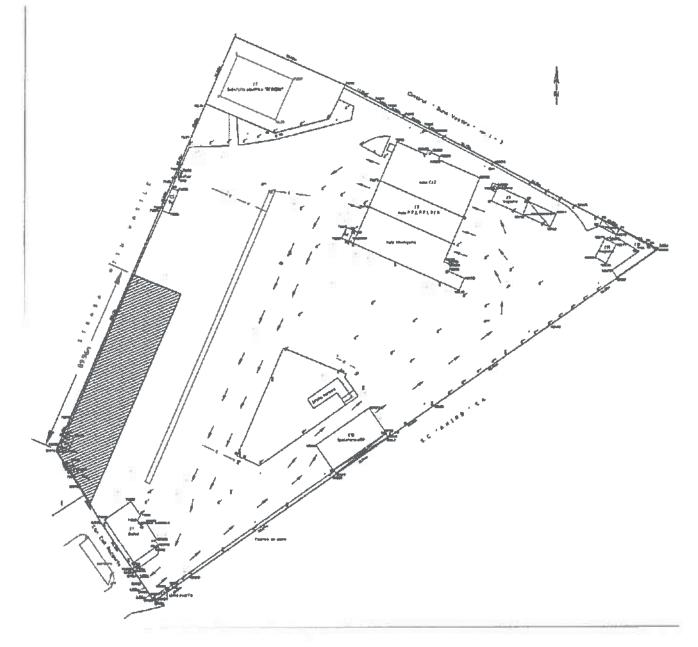
Flux tehnologic Berceni

La această data, depoul Berceni are un parc inventar de 43 troleibuze din care parc circulant 34 în zi de lucru, activitatea de întreținere/reparații pentru aceste troleibuze, se desfășoară în hala de întreținere compusă din 3 incinte delimitate astfel:

- Hala Ciz cu 2 canale de control a câte 2 poziții de lucru (canal 1 și 2);
- Hala revizii RT1 și RT2 cu 2 canale de lucru a câte 2 poziții (canalul 3 pentru RT1 și canalul 4 cu 2 rampe de suspendare vehicule pentru revizii RT2);
- Hala de RCN și tinichigerie cu câte 2 canale a câte 2 poziții de lucru (canalul 5 cu 2 rampe de suspendare vehicule și canalul 6);
- La primele 2 hale de lucru există intercalat între canalele de lucru platfome de lucru la înălțime care permit verificarea componentelor suspendate pe caroseria vehiculelor;
- În hala RCN canal 5 în poziția 1 există dispozitiv de înlocuit motoare TN.

Accesul în/din depou, se face prin strada Emil Racoviță:

La intrarea în depou se trece sistemul de taxare din starea "'Comercial" în starea "Garaj"
 și apoi în starea "Închis", urmărindu-se pe consola de bord evoluția descărcării datelor.


2) După intrarea în stația de spălare, vehiculul este spălat exterior mecanizat prin 2 operații respectiv înmuiere și spălare mecanică urmată de clătire. Se execută apoi operații de curățare manuală prin măturare umedă a podelei salonului de călători.

3) La intrarea în hala de întreține CIZ pe canalul de control se verifică starea rezistenței de izolație cu ampermetrul specializat.

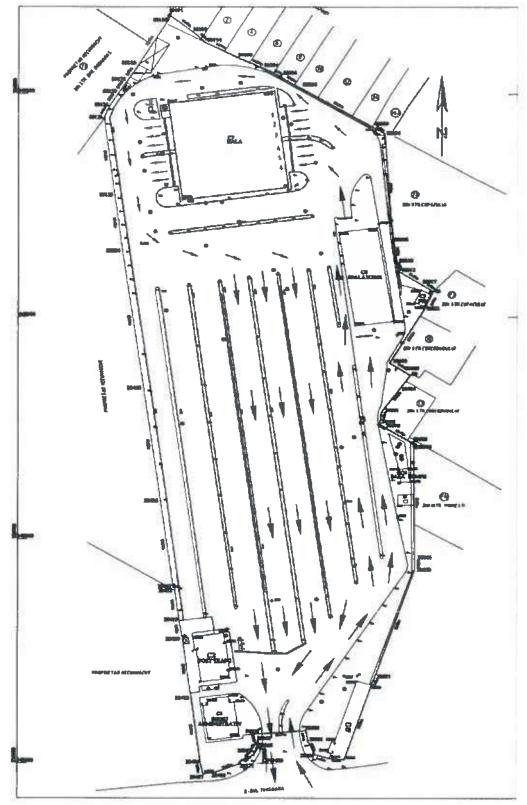
4) La operația CIZ se fac verificări de funcționare electrică a dispozitivelor de semnalizare a scurgerilor de tensiune la caroserie, urmate de verificări a componentelor mecanice care concură la siguranța circulației.

Funcție de constatările făcute, troleibuzele sunt ulterior parcate pe platforma de garare sau sunt reorientate către halele RT1/RT2 sau RCN.

Sursa: STB

Fluxul tehnologic parcurs de troleibuzele depoului Bujoreni

Troleibuzele intră în depou de pe Bd. Timișoara pe unica poartă, parcurg breteaua de retragere din partea de sud-est, după care se îndreaptă spre Stația de Spălare (C6) pe aleea 8 (situată în partea de est a depoului). În stația de spălare se execută operațiile de igienizare de tip S1, S2, S3 și S4 (după caz).


După ieșirea din Statia de Spălare troleibuzele sunt dirijate spre Hala C7 pentru realizarea următoarelor operații:

- Controlul și Întreținerea Zilnică (CIZ), Reparații Curente Neplanificate (RCN) cu un grad scăzut de dificultate, Inspecții Periodice, Controale periodice, pe Canalul 1 (partea de Nord) din hala CIZ;
- Controlul și Întreținerea Zilnică (CIZ), pe Canalul 2 din hala CIZ;
- Pe Canalul 3 din hala CIZ se află Stația ITP care deservește autovehiculele RATB-ului și terți;
- Reparații cu un grad ridicat de dificultate care imobilizează troleibuzele o perioadă mai mare de timp, demontare/montare echipamente electrice (canal prevazut cu palan mecanic), etc, pe Canalul 4 din hala Revizii;
- Reviziile Tehnice de gradul 1 și II, înspecții Periodice, Reparații Curente Neprevăzute (când este necesară suspendarea troleibuzului pentru teste de mers și frana electrică), pe Canalul 5 din hala Revizii;
- Lucrări de tinichigerie, lucrări și reparații de lungă durată, pe Canalul 6 (partea de Sud) din hala Revizii.

După ieșirea troleibuzelor din Hala C7, acestea vor fi dirijate pentru a fi garate pe platforma de parcare (alei: II, III, IV, V, VI, VII).

Capacitatea platformei de parcare este de aproximativ 140 unități.

Sursa: STB

Autobuze

Activitatea principală a Diviziei Transport Autobuze se desfășoară în cele 8 autobaze.

Tabel 7. Situația autobazelor

Autobaza	Linii deservite	Capacitate actuală de parcare și întreținere	Servicii oferite
Floreasca	143,253,282,335,362,368,381,422,461,696	98	Stație spălare cu 2 fire, stație alimentare, CIZ, stație revizie
Ferentari	104,105,116,124,125,126,133,137,139,141,1 73,216,220,302,323,402,414,418,425	220	Stație spălare cu 2 fire, stație alimentare, CIZ, stație revizie
Nordului	123,131,149,182,205,261,304,331,449,460,60 1,605	120	Stație spălare cu 2 fire, stație alimentare, CIZ, stație revizie
Militari	106,136,137,138,162,163,173,178,185,221,23 6,268,336,406,456	136	Stație spălare cu 2 fire, stație alimentare, CIZ, stație revizie
Titan	101,102,103,202,223,243,246,311,330,335,4 00,404,409,698,780,781,783	220	Stație spălare cu 2 fire, stație alimentare, CIZ, stație revizie
Pipera	104,112,135,143,232,300,301,605,682,697	180	Stație spălare cu 2 fire, stație alimentare, CIZ, stație revizie
Alexandria	117,122,168,222,226,227,268,303,327,368,3 85,408,427,428,438,439,453,455,668	200	Stație spălare cu 2 fire, stație alimentare, CIZ, stație revizie
Obregia	123,232,312,313,381,471	66	Stație spălare cu 2 fire, stație alimentare, CIZ, stație revizie

Sursa: STB

Capacitatea de garare a celor 8 autobaze este prezentată în tabelul următor:

Tabel 8. Capacitatea de garare în autobaze

Autobaza	Capacitate maxima de garare	Nr actual de vehicule	Parc circulant
Floreasca *	98	110	91
Obregia	66	60	60
Ferentari	220	194	168
Nordului	120	109	101
Alexandria	200	159	140
Militari	136	147	122
Titan	220	226	175
Pipera*	180	142	136
Total	1240	1147	993

Sursa: RATB

Notă: * autobaze ce se vor desființ

ADTPBI

În cursul anului 2018 au început lucrările pentru construirea unei autobaze noi pe str. Acțiunii, lângă depoul de tramvaie Giurgiu, cu o capacitate de garare de 227 autobuze. Menționăm că în cca un an de zile două autobaze vor fi desființate: Floreasca (hotărârea CGMB nr. 16/17.01.2018) și Pipera (hotărârea CGMB nr. 26/22.02.2018). Totodată, se va înființa autobaza Giurgiului, conform hotărârii CGMB nr. 35/22.02.2018.

2.4 Facilitățile de întreținere

Întreținerea vehiculelor de transport public se realizează în 20 unități de exploatare: 8 de tramvaie, 3 de troleibuze, 1 tramvaie + troleibuze și 8 autobaze, coordonate de Direcția Transport și Mentenanță care cuprinde 5 Divizii, în cadrul cărora se desfășoară o activitate susținută în vederea sesizării și efectuării unor propuneri corective imediate pentru îndeplinirea obiectivelor propuse, evitarea oricăror evenimente nedorite care ar putea fi prevenite și asigurarea necesarului de piese, materiale și consumabile într-un termen cât mai redus de la solicitare.

Troleibuze

Programul de mentenanță a parcului de vehicule realizat în depouri

Programul de mentenanță a parcului de vehicule în cadrul depourilor se realizează în concordanță cu procesele tehnologice de întreținere aprobate pentru fiecare tip de vehicul cu tracțiune electrică în parte. Programul de mentenanță al vehiculelor de transport electric cuprinde operații de verificări și întreținere tehnică preventivă după cum urmează:

1. Control și întreținere zilnică (CIZ)

Se execută zilnic cu ocazia retragerii vehiculelor în depou și constă în operații de verificare și probe executate la elementele care asigură siguranța în circulație a vehiculului în scopul garantării stării de bună funcționare. În principal este verificată funcționarea prizelor de curent, a sistemelor de frânare, a sistemului de rulare și direcție (la troleibuze), a sistemelor de semnalizare optică și acustică și funcționarea ușilor.

Plan programat CIZ 2018: - tb.: 60.971 operații

2. Control periodic (CP)

Se execută la un rulaj de 1250 km pentru troleibuze. Cuprinde operațiile cuprinse la CIZ și în plus verificări ale grupului motor-compresor (la troleibuze) și diferite elemente ale caroseriei.

Plan programat CP 2018:-tb.: 6.204 operații

3. Revizia tehnică de gradul 1 (RT1)

Se execută la un rulaj de 5000 km pentru toate tipurile de troleibuze (cu excepția troleibuzelor Astra Irisbus la care se execută la un rulaj de 30.000 km). Constă în lucrări de verificare, reglare, strângere și ungere ale agregatelor, ansamblurilor și subansamblurilor vehiculelor cu scopul menținerii unei stări tehnice corespunzătoare și a prevenirii unor defecțiuni tehnice ale unor echipamente cu o fiabilitate mai redusă.

Plan programat RT1 2018: - tb.: 971 operații

4. Revizia tehnică de gradul 2 (RT2)

Se execută la un rulaj de 20.000 km pentru toate tipurile de i troleibuze (cu excepția troleibuzelor Astra Irisbus la care se execută la un rulaj de 60.000 km). Pe lângă operațiile prevăzute la RT1, cuprinde o serie de operații cu un grad sporit de dificultate. La tramvaie se execută cu scoaterea boghiurilor de sub caroserie.

Plan programat RT2 2018: - tb.: 367 operații

5. Revizia periodică (RP)

Se execută numai la troleibuzele Astra Irisbus la un rulaj de 5000 km. Cuprinde operații de verificare a stării tehnice a elementelor de captare, a sistemelor de direcție, rulare-suspensie, tracțiune, a grupului motor-compresor, dar și a unor elemente de caroserie.

Plan programat RP 2018 : - tb.: 655 operații

Programul de igienizare și dezinfecție a vehiculelor

Are ca scop asigurarea unei stări de curățenie și igienă corespunzătoare a vehiculelor și cuprinde următoarele programe de igienizare :

1. Programul de igienizare S1

Se execută zilnic cu ocazia retragerii vehiculelor de transport călători în depou (inclusiv cu ocazia ramforsărilor). Procesul tehnologic cuprinde: măturarea umedă a salonului de pasageri și a treptelor scărilor, spălarea treptelor scărilor, ștergerea prafului de pe scaune, pervaze, ferestre, dulapuri de aparataj, dezinfectarea barelor de susținere și a mânerelor de la scaune cu soluție dezinfectantă.

Plan programat S1 2018: - tb.: 56.359 programe

2. Programul de igienizare S2

Se execută la aproximativ 15 zile (de două ori pe lună). Procesul tehnologic cuprinde pe lângă operațiile prevăzute cu ocazia S1 următoarele operații: spălarea boghiurilor/jantelor cu jet de apă sub presiune, degresarea și spălarea cu apă și soluții de igienizare a părților laterale, a bordurilor acoperișului, a părților frontale (față/spate), ștergerea geamurilor laterale, spălarea la interior a

caroseriei, inclusiv a podelei, plafonului, geamurilor și dispersoarelor de la corpurile de iluminat, spălarea la interior a postului de conducere.

Plan programat S2 2018: - tb.: 3.382 programe

3. Programul de igienizare S3

Se execută de regulă la o perioadă de 3 zile, la retragerea vehiculelor în depou sau la o perioadă mai mică la dispoziția conducerii unității atunci când condițiile de mediu o impun. Procesul tehnologic presupune: spălarea cu apă și soluții de igienizare a părților laterale ale vehiculului, a bordurilor acoperișului, a părților frontale urmată de ștergerea geamurilor laterale pe exterior.

Plan programat S3 2018: - tb.: 15.365 programe

4. Programul de igienizare S4

Se execută de regulă de 3 ori pe an, cu ocazia reviziilor RT2 și RT3 la toate tipurile de vehicule cu excepția troleibuzelor Astra Irisbus la care se execută cu ocazia RT1 și RT2 sau la comanda conducerii unității în situații speciale. Cuprinde toate operațiile executate cu ocazia S2 la care se adaugă dezinfectarea întregului salon de călători (scaune, bare, pereți laterali, pervaze, podea) și a cabinei manipulantului și neutralizarea înscrisurilor de grafitty.

Plan programat S4 2018: - tb.: 477 programe

Situația detaliată a planului de mentenanță anuală pe depouri și marci de vehicule este prezentată în tabelul următor:

Tabel 9.			RE	EVIZH PL	ANIFICA	TE		S	PĂLĂRI ȘI	IGIRNIZĂ	RI
DEPOUL	TIP VEH	CIZ	СР	RT1	RT2	RT3	RP	S 1	S2	S3	S4
		Nr. operații	Nr. operații	Nr, operații	Nr. operații	Nr. operații	Nr. operații	Nr. programe	Nr. programe	Nr. programe	Nr. programe
BUC.NOI.	ASTRA IKARUS	7533	887	211	70			7025	445	2022	63
VATRA	ASTRA IKARUS	7250	649	155	52	<u> </u>		6842	357	1621	50
	ASTRA IRISBUS	13152	1375	36	36		364	12289	756	3433	107
BERCENI	ASTRA IKARUS	10881	1059	258	86			9920	623	2830	88
BUJORENI	ASTRA IKARUS	11468	E135	282	94			10271	610	2773	86
	ASTRA IRISBUS	10687	1099	29	29		291	10012	591	2686	83

	total troleibuze	60971	6204	971	367	0	655	56359	3382	15365	477
	ASTRA IRISBUS	23839	2474	65	65	0	655	22301	1347	6119	190
Total op./ mărci	ASTRA IKARUS	37132	3730	906	302	0	Ð	34058	2035	9246	287
VATRA	ASTRA IKARUS	7250	649	155	52			6842	357	1621	50
BUC.NOI.	ASTRA IKARUS	7533	887	211	70			7025	445	2022	63

Sursa: STB

Programul de mentenanță a parcului de vehicule cuprinde pe lăngă reviziile planificate și lucrări de reparație accidentală (RCN-reparații curente neplanificate) estimate într-un procent cuprins între 20-30% față de manopera cuprinsă în reviziile planificate.

Dimensionarea programului de reparații în relația cu Uzina de Reparații, cât și a programului de mentenanță realizat în depouri a fost facută luându-se în considerare oferta de transport estimată pentru o perioadă de un an, comunicată de către Serviciul Programare la un parc circulant maxim de 275 tramvaie și 177 de troleibuze.

Autobuze

În cadrul activității Diviziei Transport Autobuze, ca structură integrată în cadrul Direcției Transport și Mentenanță, activitatea principală o constituie exploatarea și întreținerea parcului de vehicule cu scopul realizării programului de transport în condiții de asigurare a siguranței circulației și a condițiilor optime de confort a publicului călător din municipiul București.

Derularea programului de reparații ale parcului

Programul de reparații ale mijloacelor de transport ce constituie o componentă majoră a activității de exploatare se dimensionează anual ținând cont de factori determinanți ca:

- a.- Programul de transport
- b.- Durata de serviciu (uzură) îndelungată
- c.- Condițiile de exploatare
- d.- Fiabilitatea echipamentelor

Pentru asigurarea programului de transport stabilit, Planul de reparații anual este întocmit în colaborare cu Divizia Reparații Mijloace de Transport, în funcție de capacitatea de producție a acesteia și a normativelor de reparații.

Programul de mentenanță a parcului de vehicule realizat în autobaze

Programul anual de mentenanță se urmărește și înregistrează prin sistemul integrat SAP (System Aplication in Production) să fie realizat în autobazele proprii la intervalele reglementate pe tipuri de inspecții și revizii tehnice după cum urmează:

1. Control și întreținere zilnică (CIZ)

Se execută zilnic cu ocazia retragerii vehiculelor în autobază i constă în operații de verificare și probe efectuate la elementele care asigură siguranța în circulație a vehiculului în scopul garantării stării de bună funcționare. În principal este verificată funcționarea sistemelor de frânare, a sistemului de rulare și direcție, a sistemelor de semnalizare optică și acustică, a sensibilității ușilor, etanșeitatea conductelor și furtunurilor, verificări vizuale interioare și exterioare.

Plan programat CIZ: 276.056 operații

2. Inspecția Vizuală Periodică la fiecare 5.000 km (IVP 5000Km)

Se execută la un rulaj de 5.000 km. Cuprinde operațiile de la CIZ și în plus diagnosticarea instalațiilor principale cu echipamentul de diagnoză, deschiderea tuturor capacelor de vizitare și inspectarea sistemelor și echipamentelor, verificarea cu cheia dinamometrică a strângerii piulițelor roților, curaățarea filtrului de aer motor, a intercoolerului și a radiatorului răcire motor.

Plan programat IVP 5000: 11.085 operații

3. Revizia tehnică de 30.000 km (REV 30.000 Km)

Se execută la un rulaj de 30.000 km. În principal constă în lucrări de verificare a nivelului electrolitului în acumulatori și a agentului frigorific în instalația de climatizare, a stării și a etanșării compresorului și a conductelor, a funcționării suflantelor, lubrifierea arborelui cardanic, înlocuirea filtrului de aer motor și a filtrului de aer post conducere.

Plan programat REV 30.000: 1.847 operații

4. Revizia tehnică de 60.000 km (REV 60.000 Km)

Se execută la un rulaj de 60.000 km. Pe lângă operațiile prevăzute la REV 30.000, cuprinde o serie de operații cu un grad sporit de dificultate. Se efectuează schimbul de ulei motor și a filtrului de ulei, a cartușului filtrului uscător de la instalația de aer comprimat, a filtrului uscător la instalația de climatizare, a filtrului de motorină la instalația de încălzire suplimentară, a prefiltrului și filtrului de motorină al instalație de alimentare cu combustibil.

Plan programat REV 60.000: 924 operații

5. Revizia tehnică de 120.000 km (REV 120.000 Km)

Se execută la un rulaj de 120.000 km. Cuprinde schimbul de ulei și a filtrului de ulei de la cutia de viteze, a cartușului filtrului instalației de alimentare cu AdBlue la autobuzele Euro 4, înlocuirea vaselinei la butucii de roată la osia față și a uleiului la osia spate.

Plan programat REV 120.000: 462 operații

6. Revizia tehnică de 180.000 km (REV 180.000 Km)

Se execută la un rulaj de 180.000 km. Cuprinde înlocuirea lichidului de răcire și verificarea jocului supapelor la chiulasa motorului.

Plan programat REV 180.000: 308 operații

7. Revizia tehnică de 240.000 km (REV 240.000 Km)

Se execută la un rulaj de 240.000 km. Cuprinde înlocuirea buteliei cu gaz și a conductei de detecție de la instalația de semnalizare a incendiilor din compartimentul motor.

Plan programat REV 240.000: 231 operații

8. Revizia tehnică de 300.000 km (REV 300.000 Km)

Se execută la un rulaj de 300.000 km. Cuprinde verificarea stabilității și stării volanului, a limitatorului directței, a punctelor de blocare a direcției, a nivelului uleiului hidraulic al direcției, înlocuirea filtrului de ulei direcție.

Plan programat REV 300.000: 185 operații

9. Revizia tehnică de 480.000 km (REV 30.000 Km)

Se execută la un rulaj de 480.000 km. Cuprinde alimentarea cu unsoare a rulmenților de la butucii roților spate.

Plan programat REV 480.000 : 115 operatii

10. Revizia tehnică de primavară (RTP)

Se execută în fiecare primavară la întreg parcul circulant. În principal cuprinde verificări ale instalațiilor de climatizare, a caroseriilor, a amenajărilor interioare și exterioare, a instalațiilor de alimentare cu motorină si cu AdBlue (numai la Euro 4), a instalațiilor de aer comprimat, a sistemelor de direcție, frânare, suspensie, a bateriilor de acumulatori, a roților, a instalațiilor de răcire, a instalațiilor de răcire, a sistemului de evacuare a gazelor arse, etc.

Plan programat RTP: 1.000 operații

11. Revizia tehnică de toamnă (RTT)

Se execută în fiecare toamnă la întreg parcul circulant. În principal cuprinde aceleași verificări ca la RTP, cu accent suplimentar pe verificări ale instalațiilor de climatizare, a instalațiilor de aer comprimat, a sistemelor de direcție, frânare, suspensie, a bateriilor de acumulatori, a instalațiilor electrice, etc.

Plan programat RTT: 1.000 operații

PB

12. Pregatirea autobuzelor în vederea efectuării ITP (PITP)

Se execută înainte de fiecare programare la ITP. În principal cuprinde verificări ale parametrilor de funcționare cu echipamentul de diagnoză, verificări ale instalațiilor de climatizare, a caroseriilor, a amenajărilor interioare și exterioare, a instalațiilor de alimentare cu motorină și cu AdBlue (numai la Euro 4), a instalațiilor de aer comprimat, a sistemelor de direcție, frânare, suspensie, a bateriilor de acumulatori, a roților, a instalațiilor de răcire, a instalațiilor electrice, a ușilor, a sistemului de evacuare a gazelor arse, etc.

Plan programat PITP: 2.000 operații

13. Verificarea și strângerea piulițelor de roți (VSPR)

Se execută de două ori pe lună la întreg parcul circulant.Cuprinde verificarea strângerii piulițelor roților la momentul recomandat de constructor

Plan programat VSPR: 24.000 operații

Programul anual de igienizări ale autobuzelor la planul de prestații se înregistrează prin sistemul integrat SAP (System aplication in production) să fie realizat în autobazele proprii după cum urmează:

1. Programul P 1

Se execută zilnic, la toate autobuzele retrase în autobază. Procesul tehnologic cuprinde curățarea prin măturare umedă și ștergere cu mopul umed a salonului de călători, stergerea prafului de pe mobilierul interior (scaune, bare de susținere, pervazele ferestrelor, capacele mecanismelor de acționare a ușilor, dulapuri, aparataj, etc.).

Plan programat P1: 275.469 programe

2. Programul P 2

Se execută atunci când condițiile meteorologice o impun. Procesul tehnologic conține toate operațiile cuprinse la programul P 1 și în plus se curăță înscrisurile (cu grafitii sau spray-uri) de pe pereții interiori și de pe scaune și se spală cu detergent podelele saloanelor autobuzelor, podeaua cabinei conducătorului auto, barele de susținere călători, mobilierul interior, stergerea apei rămase după spălare, cu lavete.

Plan programat P2 : 29.871 programe

3. Programul P 3

Se execută atunci când condițiile meteorologice o impun, la retragerea autobuzelor în autobază (la prima retragere, ramforsările nu vor fi luate în considerație ca retrageri și vor fi spălate după retragerea a doua, în ziua respectivă). La temperaturi mai scăzute de 0° acest program de spălare se va sista, în funcție de condițiile fiecărei autobaze. Procesul tehnologic cuprinde spălare exterioară completă (față, lateral și spate., stergerea apei eventual pătrunse în interior la spălarea exterioară.

Plan programat P3: 149.355 programe

4. Programul P 4

Se realizează o dată pe lună, după executarea reviziilor tehnice a căror periodicitate este maimare de 15.000 km. (la autobuzele Mercedes la a 3-a IVP 5.000 km.), sau ori de câte ori se consideră a fi necesar. Procesul tehnologic conține toate operațiile cuprinse la programul P 1, la programul P 3 și în plus spălarea integrală a salonului (inclusiv a plafonului, a geamurilor, a corpurilor de iluminat) cu apă și soluții de curățare, spalarea la interior a cabinei conducătorului de vehicul (inclusiv a plafonului, a geamurilor, a corpurilor de iluminat), degresarea interioară a capacelor mecanismelor, în zona ușilor și a altor spații (motor).

Plan programat P4 : 10.661 programe

5. Programul P 5

Se execută o dată la 3 zile în lunile calde (mai, iunie, iulie, august, septembrie) și săptămânal în lunile reci (ianuarie, februarie, martie, aprilie, octombrie, noiembrie, decembrie). Procesul tehnologic cuprinde spălarea la interior a geamurilor salon autobuz și a cabinei conducătorului auto.

Plan programat P5: 57.787 programe

6. Programul P 6

Se execută la dispoziția atelierului de întreținere – reparații înainte de a intra autobuzul în hala de întreținere pentru executarea reviziilor tehnice.Procesul tehnologic conține spălarea motorului și a agregatelor acestuia, cu soluție specială degresantă.

Plan programat P6: 192 programe

7. Programul P 7

Se execută la dispoziția atelierului de întreținere – reparații înainte de a intra autobuzul în hala de întreținere pentru executarea reviziilor tehnice, sau ori de câte ori se consideră a fi necesar. Procesul tehnologic conține spălarea cutiei de viteze, a punții fata și a punții motoare, a jantelor roților - cu jet de apă și detergent, spălarea pasajelor roților cu jet de apă.

Plan programat P7: 1.766 programe

8. Programul P 8

Se execută la dispoziția atelierului de întreținere – reparații ori de câte ori se consideră a fi necesar, în situații speciale. Procesul tehnologic conține toate operațiile cuprinse la programul P 4 și în plus dezinfectarea interiorului salonului autobuzului, prin pulverizarea locală a substanțelor dezinfectante, dezinfectarea interiorului cabinei conducătorului autobuzului, stergerea zonelor cu care publicul călător intră în contact.

Plan programat P8 : 96 programe

ADTPEI

3. Problemele și nevoile specifice care justifică investiția

Pe măsură ce numărul vehiculelor crește, aglomerația din trafic în mediul urban și deteriorarea calității aerului devin probleme tot mai stringente cu care se confruntă marile orașe. Astfel, tendințele sunt de a se lua măsuri imediate pentru îmbunătățirea calității vieții în marile orașe, pentru conservarea mediului înconjurător și a ecosistemului uman. Vehiculele echipate cu sisteme de propulsie clasice bazate pe motoare cu ardere internă, existente în traficul urban nu îndeplinesc criteriile tot maistricte care se impun:

- Reducerea nivelelor de zgomot și îmbunătățirea calității aerului, conform legislației europene;
- Reducerea emisiilor de CO2 produse de vehiculele clasice datoritā motoarelor cu ardere internă;
- Reducerea exploatării resurselor convenționale de energie obținute din combustibili fosili.

Într-un raport din 2011, Organizația Internațională a Transportului Public (UITP) arăta faptul că autobuzele reprezintă între 50 și 60 % din oferta totală de transport public din Europa, iar 95 % dintre acestea utilizează combustibil diesel. Chiar și așa, operatorii de autobuze destinate transportului public de persoane au la dispoziție o gamă largă de combustibili și tehnologii alternative la diferite grade de dezvoltare tehnică pe piață.

În condițiile în care emisiile de CO2 și sarcinile de poluare locală trebuie respectate, este evident faptul că trebuie găsite soluții pentru vehicule alternative. Autoritățile publice și operatorii de transport public în comun sunt obligați în cazul achiziției de mijloace de transport în comun să respecte condițiile prevăzute în Directiva pentru Vehicule Ecologice (2009/33/EC) prin luarea în considerare a consumului de energie, a emisiilor de CO2 și a altor emisii nocive (NOx, NMHC și PM). Toate modelele noi de mijloace de transport în comun vândute pe piață începând cu ianuarie 2014 trebuie să respecte standardele Euro 6 pentru emisii.

Directiva a fost integrată în legislația națională a statelor membre UE. Directiva arată că în Cartea Verde a Comisiei privind transportul urban din 25 septembrie 2007 intitulată "Către o nouă cultură a mobilității urbane", se îndică sprijinul părților înteresate pentru promovarea introducerii pe piață a vehiculelor nepoluante și eficiente din punct de vedere energetic, prin intermediul achizițiilor publice ecologice. Se afirmă că o abordare posibilă ar consta în internalizarea costurilor externe aferente funcționării vehiculelor care trebuie achizițiionate, folosind drept criteriu de atribuire, pe lângă prețul vehiculului, costurile legate de consumul de energie, de emisiile de CO2 și de emisiile poluante care intervin pe toată durata de viață a vehiculului. În plus, achizițiile publice ar putea favoriza noile standarde de poluare Euro. Folosirea anticipată a vehiculelor ecologice ar putea, de asemenea, să amelioreze calitatea aerului în zonele urbane.

Totodată, în cadrul directivei sunt evaluate în bani și calculate conform unei metodologii prezentate în cadrul acesteia, costurile operaționale pentru consumul energetic și costurile pentru emisiile de CO2 și pentru alte emisii poluante pentru durata de viață a unui vehicul.

Locuitorii Municipiului București trebuie să facă față unei probleme legată de nivelul calității aerului ca urmare a unei circulații rutiere intense, fără o evaporare rapidă a emisiilor poluante produse de motoarele autovehiculelor.

Figura următoare ilustrează distribuția modală a serviciilor de transport public utilizate în scenariul optim. Aproximativ 9% din nr. total de călători îmbarcați în rețea se regăsesc în modurile de transport de tip troleibuz și 51 % utilizează autobuzele pentru transportul în comun, conform datelor operatorului pe anul 2017.

Sursa: STB

La momentul actual, din cele 302 troleibuze din inventarul STB, 177 au fost scoase pe trasee pentru realizarea programului de transport, conform raportului de activitate pe anul 2017 al RATB, toate având durata normală de funcționare depășită. Principalul avantaj al troleibuzelor constă în "emisii 0" de poluanți în marile orașe. Poluarea atmosferică în amonte se va produce dacă energia electrică este produsă prin metode fosile. Cu toate acestea, centralele electrice pot controla astfel de emisii mai eficient decât motoarele mici și, de asemenea, poluarea centralelor electrice are loc în zonele de poluare mai puțin critice decât în cazul în care funcționează autobuzele.

În același timp, cele 1.000 de autobuze utilizate de STB pentru realizarea programului de transport au durata normală de funcționare depășită, întrucât conform HG 2139/2004 durata normală de funcționare la autobuze este de 8 ani. Din punct de vedere al poluării generate de flota de autobuze, în anul 2017 a fost estimată o valoare de 56.615 tone CO2.

Year	Emission	Category	Fuel	Segment		Urban Peak [t]	Total [t]
And the other				Urban Buses Standard 15 -			
	Hot Fossil	Buses	Diesel	18 t	CO2	56472.92	56472.92
				Urban Buses Standard 15 -			
	Hot Bio	Buses	Diesel	18 t	CO2	0.00	0.00
				Urban Buses Standard 15 -			
2017	SCR	Buses	Diesel	18 t	CO2	141.60	141.60
						Total CO2	56614.52
				Urban Buses Standard 15 -			
	Hot	Buses	Diesel	18 t	CO	112.98	112.98
				Urban Buses Standard 15 -			
	Hot	Buses	Diesel	18 t	CH4	2.08	2.08
				Urban Buses Standard 15 -			
	Hot	Buses	Diesel	18 t	N2O	0.45	0.45
			D' I	Urban Buses Standard 15 -	2010	0.14	0.14
	Hot	Buses	Diesel	18 t	NH3	0.14	0.14
	11-1	D	Direct	Urban Buses Standard 15 -	NRUOC	13.00	12.00
	Hot	Buses	Diesel	18 t Urban Buses Standard 15 -	NMVOC	12.08	12.08
	Hot	Buses	Diesel	18 t	NO	393.57	393.57
2017	- 101	Duses	Diesei	Urban Buses Standard 15 -	INC	595.57	333.37
2017	Hot	Buses	Diesel	18 t	NO2	64.07	64.07
	1100	buses	Dieser	Urban Buses Standard 15 -	1102	04.07	04.07
	Hot	Buses	Diesel	18 t	NOX	457.64	457.64
-	1101	LI USUD	Dieser	Urban Buses Standard 15 -			
	Hot	Buses	Diesel	18 t	PM 10	6.58	6.58
	Non	1000 C		Urban Buses Standard 15 -			
2017	Exhaust	Buses	Diesel	18 t	PM 10	4.24	4.24
- 20 - 2011 -	1	Sano aver				Total	
221 650					75	PM10	10.82
				Urban Buses Standard 15 -			
	Hot	Buses	Diesel	18 t	PM 2.5	6.58	6.63
	Non			Urban Buses Standard 15 -	and and a second	Comes	
2017	Exhaust	Buses	Diesel	18 t	PM 2.5	2.03	1.97
						Total	
				P. 444 (1997)		PM2,5	8.59
	1200 11 10		1000	Urban Buses Standard 15 -	and the second		
	Hot	Buses	Diesel	18 t	PM TSP	6.58	6.63
The second	Non	-	-	Urban Buses Standard 15 -			
2017	Exhaust	Buses	Diesel	18 t	PM TSP	5.05	4.90
						Total	
		_				PMTSP	11.53
2012		D	D1	Urban Buses Standard 15 -	VOC		
2017	Hot	Buses	Diesel	18 t	VOC	14.17	14.17

Tabel 10. Poluarea generată de parcul de autobuze în anul 2017

Sursa: STB

ADTPBI STATES .

Conform prevederilor Legii nr. 104/2011 privind calitatea aerului înconjurător, în urma evaluărilor calității aerului la nivelul anului 2013, a fost emis Ordinul M.M.A.P. nr. 1206/2015 pentru aprobarea listelor cu unitățile administrativ-teritoriale întocmite în urma încadrării în regimuri de gestionare a ariilor din zonele și aglomerările prevăzute în Anexa 2 la Legea nr. 104/2011 privind calitatea aerului înconjurător.

În scopul evaluării și gestionării calității aerului, Legea nr. 104/2011 privind calitatea aerului înconjurător prevede delimitarea pe teritoriul țării de zone și aglomerări, iar Municipiul București, prin numărul și densitatea populației întrunește condițiile de a fi una dintre cele 13 aglomerări stabilite în România.

În urma comunicării de către autoritatea publică centrală pentru protecția mediului a necesității întocmirii Planului integrat de calitate a aerului, Primăria Municipiului București a inițiat acțiunile legale și a înființat, prin Dispoziția Primarului General nr.1528/06.10.2015 completată cu D.P.G. nr. 69/11.01.2016 și D.P.G. 1290/22.09.2017, Comisia Tehnică pentru elaborarea Planului Integrat de Calitate a Aerului în Municipiul București.

Planurile de calitate a aerului cuprind măsuri adecvate pentru reducerea în cel mai scurt timp a nivelului de poluanți în aer până la valori mai mici decât valorile limită/valorile țintă, precum și măsuri suplimentare de protecție a grupurilor sensibile ale populației, inclusiv a copiilor.

Elaborarea și implementarea Planului Integrat de Calitatea Aerului este intrinsec legată de Planul de Mobilitate Urbană Durabilă 2016-2030 Regiunea București-Ilfov care va asigura punerea în aplicare a conceptelor europene de planificare și de management pentru mobilitatea urbană durabilă adaptate la condițiile specifice regiunii București – Ilfov reprezentând strategia de transport pentru următorii 15 ani cu o viziune coerentă de dezvoltare a mobilității la nivelul capitalei și în zonele limitrofe.

Conform Planului Integrat de Calitate a Aerului 2018-2020 al Municipiului București, traficul rutier este principalul responsabil de emisiile de NO_x și benzen, și contribuie în jur de 50 % și la emisiile de PM_{10} și $PM_{2,5}$. Încălzirii rezidențiale i se datorează peste 40 % din emisiile de particule, această activitate având contribuții semnificative și la emisiile celorlalți poluanți.

Modernizarea și reorganizarea sistemului de transport pe întreaga zonă București – Ilfov este o prioritate, sistemul actual nefiind adecvat pentru dezvoltarea economică și socială a capitalei României și a județului Ilfov, având în vedere :

- Numărul în creștere de autovehicule peste 600 autovehicule / 1000 locuitori depășind mult media Uniunii Europene;
- Desfăşurarea zilnică a peste 6 milioane de călătorii în Bucureşti şi Ilfov; deşi acest număr se află în creştere, numărul de calatorii pe persoană/ zi de 2,7 este mult mai mic decât în alte capitale europene, ceea ce sugerează o mobilitate redusă în prezent, mai ales în Ilfov şi în cartierele cu probleme sociale;

- Concentrarea, conform datelor statistice, a peste 24% din totalul locurilor de muncă la o populație de aproximativ 10% din totalul României;
- Suprafața mică a Bucureștiului, comparativ cu multe capitale europene (București 228 km², Viena-414 km² șsi Praga 496 km²) și o densitate a populației peste majoritatea capitalelor europene de aprox. 8500 locuitori / km² ajungând în unele zone la peste 12000 locuitori / km²;
- Infrastructura de drumuri și străzi la jumătate față de alte capitale europene, insuficientă pentru o dezvoltare economică și socială;
- Rata de accidente/ fatalitate 91 în România față de 51 media Uniunii Europene (Bulgaria 90 și pe ultimul loc Letonia cu 105);

(Sursă: http://ec.europa.eu/transport/road_safety/pdf/vademecum_2015.pdf)

- Migrația masivă a populației Bucureștiului spre zonele limitrofe, mulți dintre locuitorii județului Ilfov revenind zilnic spre locurile de muncă sau spre școlile capitalei;
- Dezvoltării economice şi sociale de mare amploare în Ilfov precum programul de dezvoltare a Aeroportului Internațional Henri Coandă, dezvoltarea zonei de business cu precădere în servicii de IT în nordul Bucureștiului şi realizarea unuia dintre cele mai mari proiecte de inovare - dezvoltare din Europa – în domeniul cercetării nucleare pe platforma de la Măgurele (Proiect ELI - Extreme Light Infrastructure) şi SV-ul Bucureștiului.

Implementarea Planului de Mobilitate Urbană Durabilă 2016-2030 pentru Regiunea București – Ilfov (PMUD) în scopul rezolvării nevoilor de mobilitate atât ale populației cât și ale mediului economic, instituțional, cultural, pentru a îmbunătăți calitatea vieții reprezintă și o premiză a atingerii obiectivelor Directivei 2008/50/EC privind protecția mediului, respectiv asigurarea calității aerului - obiectiv prioritar al Planului Integrat de Calitatea Aerului (PICA).

Proiectele și măsurile PMUD au o contribuție esențială în reducerea poluării, a emisiilor de gaze cu efect de seră și a consumului de energie, componenta de protecție a mediului fiind astfel un obiectiv strategic al PMUD alături de asigurarea accesibilității, îmbunătățirea siguranței și securității în timpul deplasărilor, eficiența economică și calitatea mediului urban.

Sectorul transporturilor este unul dintre factorii cei mai generatori de poluare în zonele urbane, din punct de vedere al calității aerului și al zgomotului. Multe dintre problemele identificate pe parcursul PMUD și intervențiile dezvoltate pentru rezolvarea și îmbunătățirea lor au efecte asupra mediului din Regiunea București-Ilfov. În acest sens, investiția propusă răspunde problemei identificate în PMUD conform căreia "troleibuzele existente oferă servicii de calitate scăzută și cu accesabilitate limitată, într-un sistem discontinuu", Politica *Transport public local*, Index *C-10 Troleibuz*. Soluția propusă în PMUD presupune abordări strategice în ceea ce privește dezvoltarea transportușui public electric (flotă și infrastructură de încărcare).

Obiectivele și proiectele cuprinse în document sunt corelate cu documentele strategice - Masterplanul General de Transport (MPGT), Planul de Urbanism General (PUG), Planul de dezvoltare regională (PDR BI), strategiile locale de dezvoltare urbană și acoperă sectorul de transport public local și

feroviar inclusiv facilitățile de intermodalitate și multimodalitate, deplasările nemotorizate, sectorul de transport rutier și politica de staționare, integrarea dintre planificarea urbană și planificarea infrastructurii de transport și spațiile pietonale. Astfel, se regăsesc măsuri privind investiții ale METROREX, investiții pentru drumurile naționale, investiții privind infrastructura rutieră și transportul public de suprafață din capitală:

- modernizarea rețelei de mijloace de transport în comun prin reînnoirea parcului auto;
- modernizarea, extinderea infrastructurii sistemului rutier și a liniilor de tramvai;
- modernizarea, extinderea și îmbunătățirea liniilor de metrou;
- construcția de parcări de tip Park & Ride la punctele cheie de intrare în oraș;
- investiții pentru drumuri naționale, străzi și drumuri locale;
- construcția de parcări subterane;
- amenajarea infrastructurii utilitare pentru biciclete (piste de biciclete și locuri de parcare pentru biciclete), precum și extinderea sistemului de închiriere biciclete (bike-sharing);
- crearea de noi zone cu prioritate pentru pietoni şi biciclişti în centrul oraşului;
- îmbunătățirea sistemului de management al traficului;
- introducerea de benzi de circulație cu prioritate pentru transportul public.

Principalele probleme care justifică investiția, menționate și în PMUD, sunt:

- Nivelul ridicat al poluării cu emisii CO2 în centrul Municipiului București;
- Lipsa unei abordări integrate a transportului local în regiunea București Ilfov;
- Performanțe neadecvate ale sectorului de transport public din lipsa unor programe de investiții corespunzătoare.

Studiul de oportunitate a fost elaborat pentru a analiza și justifica achiziționarea de troleibuze cu autonomie și autobuze hibrid pentru transportul public de călători.

Având în vedere vechimea parcului de vehicule destinat transportului urban de călători, pentru asigurarea unui transport în condiții de calitate și confort a utilizatorilor, se impune reînnoirea acestuia prin achiziționarea unor vehicule moderne care trebuie să îndeplinească întocmai prescripțiile europene referitoare la emisiile de noxe, accesul neîngrădit al persoanelor cu dizabilități locomotorii, dotate cu sisteme de informare audio-vizuală, instalații de climatizare, etc.

Gradul de uzură Troleibuze

	1997	1995	1999	2890	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2015	2019	2020	20Z1	1	2
Tableibuz 412 E					-	1					c i						12			16						0	1
Traleibuz 512 E	5						N.S.	1																		0	1
Rares					204				247														(0	200
	1										-				- 65 .					2						0	85
ida 6US												-				ité i										0	15
	-		-	_	-	-	_		-		_	-	_	_			_		_	_	-		-		-		302

Durata normală de funcționare Depășire durata normală de funcționare

1 Vehicule în termen de funcționare normală

2 Vehicule cu termenul de funționare depăşit

Sursa: STB

Investiția este justificată de gradul de uzură al parcului de troleibuze utilizat în efectuarea programului de transport, precum și de numărul tot mai mare al defectelor înregistrate cauzate de starea tehnică a troleibuzelor. Numărul defectelor tehnice raportat la mil.veh.km. realizați a înregistrat o creștere de 15,88% în anul 2017 față de valorile înregistrate în anul 2016, conform raportului de activitate al RATB pe anul 2017.

R.A.T.B. a transmis Autorităților Locale propuneri care au fost analizate și considerate sustenabile având în vedere interesul general al serviciului de transport public pentru cetățenii capitalei. Astfel, prin H.C.G.M.B. nr. 394/21.12.2016 s-a aprobat achiziția de către Municipiul București a unui număr de 400 de autobuze urbane (320 din gama 12 m, 50 din gama 10 m și 30 din gama 18 m) precum și a 100 de troleibuze.

Autobuze

Pe lângă cele 1000 autobuze Mercedes Euro 3 și Euro 4, RATB mai deține în inventar o serie de autobuze, utilizate în trecut pentru efectuarea programului de transport, dar care, din cauza duratei de viață cu mult depășită, precum și stadiului tehnic necorespunzător, au fost scoase din circulație și urmează a fi valorificate în vederea dezmembrării.

Gradul de uzură al autobuzelor aflate în parcul RATB este prezentat în tabelul de mai jos.

Nr. crt	М	arcă autobuz	Nr. autobuze inventar la data de 01.01.2018	Perioada intrare în exploatare RATB (an)	Grad uzurā (ani)	Rulaj mediu	Observații
1		ROCAR U412	79	1995 - 2000	18 - 23	647.95 3	scoase din circulație cu
2	Autobu	ROCAR U812	1	2001	17	575,59 5	aprobare pentru
3	ze	DAF SB 220	60	1995 - 1998	20 - 23	827.52 7	valorificare în vederea
4	din circulați	DAF LPG	2	2000	18	147,87 6	dezmembrār ii
	e e	-1K-206.50	2	1993		581.81 9	
6		Iveco 3		2006	12 ani RATB	168.53 6	(Iveco an fabricație 1991)
7		Mercedes Euro 3	400	2006	12	558.36 8	Medie Euro
	Pare disponi	Mercedes Euro 3	100	2007	11	523.82 1	3 551459 km
	bil autobuz	Mercedes Euro 4	20	2007	11	484.32 5	
8	e Merced es	Mercedes Euro 4	330	2008	10	495.32 8	Medie Euro 4 493188
	69	Mercedes Euro 4	150	2009	9	489.66 1	km
9	Total inventar 1147 autobuze		Mercedes 1000 autobuze			522.32 3	522.323

Tabel 11. Detalii privind parcut de autobuze

Sursa: STB

Tabel 12. Vârfuri rulaj

Nr. crt	Vârfuri rulaj E3, E4	Km realizați	Nr. Inventar	Autobazā
1		794.115	4165	Pipera
2	Vârfuri rulaj E3	788.268	4572	Floreasca
3		724.177	4275	Pipera
1		875.892	4803	Floreasca
2	Vârfuri rulaj E4	852.339	4899	Floreasca
3		795.929	4799	Floreasca

Sursa: STB

Toate aceste probleme și nevoi identificate justifică investiția propusă în prezentul studiu.

ADTPBI

4. Scenarille tehnico-economice prin care obiectivele proiectului de investiții pot fi atinse

4.1. Prezentare soluții alternative pentru problemele identificate

Pentru îmbunătățirea parcului de troleibuze, respectiv autobuze al STB se constată că este necesară achiziționarea unor troleibuze noi, respectiv autobuze hibrid noi cu un design adaptat mediului urban adecvat Municipiului București, cu performanțe în exploatare care să contribuie la creșterea calității serviciului de transport oferit și la creșterea numărului de utilizatori. Transportul public face parte din peisajul orașului București de aproape 150 de ani. Astfel, design-ul vehiculelor trebuie să fie ușor de identificat, să fie corespunzător continuității și încrederii acordate operatorului de transport.

Principiile care stau la baza alegerii celei mai bune soluții privind achiziția de troleibuze și autobuze hibrid noi sunt:

- Reducerea poluării și zgomotului;
- Imbunătățirea repartiției modale în favoarea modurilor de transport durabile;
- Imbunătățirea stabilității funcționale a sistemului de transport public;
- Imbunătățirea imaginii orașului prin utilizarea unor vehicule ecologice;
- Eficiența economică: Scăderea costurilor de exploatare pentru fiecare loc oferit;
- Reducerea costurilor călătoriei;
- Asigurarea unui acces facil pentru persoanele cu mobilitate redusă;
- Creșterea securității pasagerilor și siguranței în exploatare;
- Durată de viață ridicată;
- Creșterea confortului călătorilor;
- Adaptarea la cererea de transport;
- Creșterea încrederii în serviciul de transport public.

Având în vedere că investiția vizează reducerea emisiilor gaze cu efect de seră, considerăm că nucleul în jurul căruia orbitează alegerea soluției este eficiența în exploatare și nivelul de poluare, motiv pentru care studiul de oportunitate compară două tipuri de mijloace de transport pentru investiția propusă:

A. Troleibuze - autobuze electrice - troleibuze

Scenariul I =înlocuirea troleibuzelor cu autobuze electrice cu stație fixă de încărcare în depouri și la capete de linie

Autobuzele electrice pot fi împărțite în două categorii: neautonome (conectate la o sursă de energie electrică în timpul funcționării – troleibuzele) și autonome, care utilizează energia electrică înmagazinată pentru a alimenta sistemul de propulsie format din unul sau mai multe mașini

electrice. Datorită puternicei dezvoltări a sistemelor de stocare a energiei electrice (baterii sau condensatoare), această categorie de autobuze se află în ultimii ani în centrul atenției producătorilor de autovehicule și autobuze.

Avantaje ale autobuzelor electrice cu stație fixă de încărcare sunt:

- reducerea greutății și a volumului echipamentului de tracțiune și frânare electrică
- eliminarea în totalitate a emisiilor poluante diesel NOx, CO2 și particule (emisii produse local);
- realizarea unui mers silențios, fără șocuri la demaraj, virare
- posibilitatea controlului electronic cu sisteme moderne cu microprocesor, ABS si ASR
- introducerea sistemelor de diagnoză computerizată ce permite dimensionarea costurilor de revizii planificate
- introducerea mentenanței corective în locul celei preventive
- creșterea fiabilității
- randamentul superior al maşinilor electrice (>90%) comparativ cu cel al motoarelor cu ardere internă (~30%);
- capacitatea maşinilor electrice de a funcționa în regim de generator în perioadele de frânare, energia produsă fiind stocată în baterii, crescând randamentul total al sistemului;

- mașinile electrice pot fi amplasate în roțile autobuzului, permițând astfel amplasarea de baterii în spațiul destinat motorului termic, în cazul solutțiilor clasice;
- în plus, dacă se dorește o autonomie mai mare, bateriile suplimentare pot fi amplasate pe plafonul autobuzului sau sub podea, în funcție de alegerea producătorului, așadar se câștigă spațiu destinat călătorilor;
- alimentarea cu energie electrică a bateriilor se face în general pe timpul nopții, presupunând o încărcare de lungă durată, 4 = 6 ore.

Dezavantaje ale autobuzelor electrice cu stație fixă de încărcare sunt:

 Autonomia acestor autobuze este limitată de cantitatea/volumul/masa de baterii sau condensatoare montate la bord. Pentru acest tip de autobuze se utilizează o cantitate mare de baterii pentru a asigura o autonomie necesară parcurgerii fără reîncărcare intermediară în timpul zilei, fapt ce reprezintă un dezavantaj important, masa totală a autobuzului crescând simțitor, cu influență negativă asupra consumului total de energie electrică;

13

- În același timp, pe perioada de încărcare autobuzele nu pot fi utilizate, fiind necesar un număr mai mare de autobuze pentru a deservi același număr de pasageri;
- Menținerea bateriilor în ecart de temperatură optimă pentru funcționare optimă;
- Sistemul de încărcare cu stații amplasate la capete de linie necesită investiții relativ mari;
- Creșterea costurilor generale de exploatare, deoarece stațiile din traseu chiar dacă funcționează în regim automat trebuie să fie supravegheate de un dispecerat propriu și trebuie să fie revizuite și reparate periodic de către echipe specializate;
- Un dezavantaj major- traseele de autobuze sunt dependente de existența unor stații primare de alimentare cu energie electrică de 10KV sau 20KV, cu putere suficientă, pentru a putea încărca simultan toate autobuzele unei linii în scenariul maximal.

Scenariul 2 – înlocuirea troleibuzelor actuale cu unele noi, moderne, cu autonomie de până la 20 km

Troleibuzele sunt vehicule electrice de transport în comun. Aceste vehicule folosesc, același șasiu (cu anumite modificări) și o caroserie asemănătoare cu cea a unui autobuz; și sunt propulsate de motoare electrice. Curentul electric necesar funcționării motoarelor electrice trebuie să fie furnizat de două linii aeriene de contact, numite și bifilare. Troleibuzele sunt astfel legate de traseul liniilor de contact. Alimentarea cu energie electrică se realizează prin intermediul unor captatoare numite trolee, prin intermediul unor contacte glisante montate la capătul unor tije metalice, ce culisează pe linia electrică de contact. Aceasta trebuie să fie compusă din două sârme de cupru paralele, cu diametrul de circa 8 ... 10 mm, întinse pe suporți speciali fixați pe stâlpi, aflate la circa 4 ... 5 m deasupra tramei stradale. Prin aceste fire troleibuzele sunt alimentate cu tensiune de 600 ... 800 Vcc.

Troleibuzele au capacități de transport similare autobuzelor ca număr de pasageri transportați (aproximativ 100 pasageri varianta de 12 m lungime, respective aproximativ 150 pasageri varianta de 18 m lungime), dar sunt mai puțin poluante datorită echipării cu sisteme de propulsive cu motoare electrice. Troleibuzele sunt mult mai silențioase decât autobuzele clasice echipate cu motoare diesel, ceea ce ajută la reducerea zgomotului în zonele deservite de acestea. Troleibuzele sunt mai puțin flexibile atunci când se realizează lucrări de reabilitare a infrastructurii rutiere, lucrări care duc la închiderea temporară a liniei de troleibuz.

Troleibuzele moderne permit recuperarea energiei electrice la frânare. Aceasta poate fi utilizată de către consumatori auxiliari ai troleibuzului (sistemul de iluminat, sistemul de ventilație, etc.) sau de către alte troleibuze aflate în circulație pe sectorul respectiv (de exemplu un troleibuz, care coboară o pantă și frânează, furnizează energia necesară urcării pentru un alt troleibuz mergând în sens opus pe aceeași secțiune).

Achiziționarea de troleibuze noi cu autonomie de până la 20 km va contribui semnificativ la îmbunătățirea desfășurării activității de transport în sensul că odată cu modernizare flotei va crește și atractivitatea utilizării transportului în comun și implicit numărul de călători, dar și prin evitarea

întreruperilor serviciului cauzate de lucrări la infrastructura electrică sau rutieră. În cazul unor probleme pe traseu (lucrări de reparații pe anumite porțiuni ale infrastructurii rutiere sau liniei de contact, accidente rutiere, etc), troleibuzul va deconecta captatorul de energie electrică de la linia de contact și va continua traseul prin alimentare cu energie electrică de la bateriile din dotare.

B. Autobuze - autobuze diesel - autobuze hibrid

Soluția 1 = înlocuire autobuze diesel din parcul STB (Euro 3 și Euro 4) cu autobuze noi Euro 6

Momentan, în cadrul STB, se folosesc 1.000 de autobuze care se încadrează în normele de poluare EURO 3 și EURO 4, cu un consum ridicat de combustibil, echipate cu motor diesel de 4-6 litri, cutie de viteze semi- automată cu actuatori pneumatici; având ca avantaje: capacitatea mare de transport, simplitatea sistemelor și autonomia ridicată datorită rezervoarelor de combustibil de capacitate mare, dar un confort mai redus față de sistemele moderne.

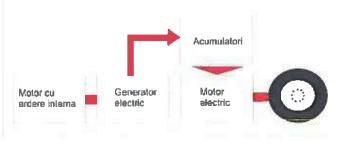
Pentru innoirea actualei flote de autobuze trebuie luat in calcul scenariul cel mai probabil din punct de vedere al continuarii strategiei de inoire a flotei. Astfel, Scenariul 1 este reprezentat de achiziția a 100 de autobuze Diesel – tip Euro 6.

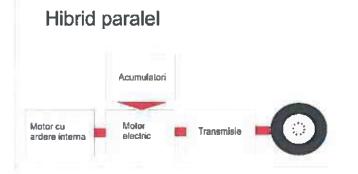
Caracteristicile Autobuzului urban EURO6 cu podea total coborată tipodimensiunea (gama) 12m, omologate cu Certificat de omologare de tip RAR sau omologat de autoritățile competente în unul din statele membre ale UE, în categoria M3

- consum mediu de 46 l carburant motorina pentru autobuze cu motoare diesel ce se incadreaza la norma de poluare Euro 6
- 103+1 Locuri pasageri
- Motor cu aprindere prin comprimare, EURO 6, montat în consola spate; controlat electronic (unitate electronică de control al motorului diesel prin CAN -magistrala de date a vehiculului- multiplex), având inclus sistemul de diagnoza, control şi refacerea parametrilor. Certificat de atestare EURO 6.
- Cutie de viteze automată cu minim 3+1 trepte. Cutia de viteze controlată electronic, cu diagnoza, control și parametrizare prin rețea CAN - magistrala de date a vehiculului multiplex.
- Punte față cu semiaxe
- Puntea spate tip carter (axe planetare "descărcate") cu reductor în punte. Nu se acceptă punte motoare cu reductor planetar în butucul roții (puntea spate certificata RAR -Registrul Auto Roman si/sau CE).
- Dotare cu computer de bord cu afişaj digital multifuncțional ce include şi funcția de diagnosticare la bord (OBD – on board diagnosis)

Soluția 2 = înlocuire autobuze diesel din parcul STB (Euro 3 și Euro 4) cu autobuze hibrid fara incarcare (fara plug-in)

Autobuzele hibrid sunt fabricate conform unor tehnologii intermediare care fac trecerea de la propulsia cu motoare diesel la propulsia bazată numai pe motoare electrice. Combinația între motorul cu ardere internă și cel electric are ca efect creșterea performanțelor energetice ale vehiculuiui, dar și păstrarea unei autonomii crescute. Autobuzele hibrid sunt dotate cu motoare termice cu o cilindree mai mică, în comparație cu cele diesel convenționale. Aceste motoare, fiind separate mecanic de sistemul de transmisie, pot fi menținute în exploatare să funcționeze în plaja parametrilor de randament maxim, iar în regimurile transzitorii se utilizează resursele de energie electrică stocată în acumulatori/supercapacitori.


Componentele principale ale unui sistem de propulsie hibrid sunt: un motor cu ardere internă, un generator, un modul cu acumuatori, un motor electric și transmisia.


Autobuzele hibrid au cel mai mic nivel al emisiilor de monoxid de carbon (compus chimic otrăvitor) în comparație cu celelalte tipuri de autobuze ce folosesc motoare cu combustie internă.

Autobuzele hibrid sunt fabricate în variante diferite, în funcție de modul de acționare: Hibrid în serie, Hibrid în paralel și Hibrid combinat.

Un hibrid - serie nu are legătură mecanică între motor și puntea roților motoare. Motorul alimentează un generator care încarcă acumulatorul, iar din acumulator energia electrică este transferată motorului electric, legat la puntea spate (punte convențională).

Un hibrid paralel are interpus un motor electric între cel termic și sistemul de transmisie.

Unii constructori mai folosesc și o combinație între cele două tipuri de sisteme utilizate pentru propulsia autobuzului, descrise anterior.

Ultimele generații de autobuze hibrid, care încă se află în perioada de testare (spre exemplu Volvo 7900, 4x2 12m), pot să parcurgă aprox.7 km în modul full-electric și pot fi reîncărcate rapid, în 6 minute, la capetele de linie (alimentarea se face prin pantograf la 750vcc și 150 kW). Astfel, aproximativ 70% din resursele energetice utilizate pot fi asigurate cu energie electrică pentru un traseu de aproximativ 10Km.

4.2. Analiza comparativă a opțiunilor

Având în vedere problemele identificate la nivelul parcului de mijloace de transport care sunt utilizate pentru realizarea serviciului de transport public la nivelul regiunii București – Ilfov, precum și soluțiile alternative propuse și prezentate în subcapitolul 4.1, este necesară o analiză din punct de vedere al costurilor pe durata de viață a variantelor anterior menționate.

În tabelul de mai jos este prezentată o analiză economică a soluțiilor propuse.

	UM	Euro6 - 12m	Troleibuz - 12m	Hibrid Diesel- Electric - 12m	Autobuz electric - 12m
Numar vehicule		1	1	1	1
Pret achizitie vehicule	Lei/buc	1,352,212	2.144.888	1.503.753	2.447.970
Troleibuze	Lei/Km	0	1.305.584	0	0
Autobuz electric	Lei/buc	0	0	0	932.560
Autobuz diesel	Lei/buc	0	0	0	0
Total recup. anuala -investitii in infrastructura aferenta/vehicul	Lei	0	19.341	0	23.314
Durata de viata	ani	12	12	12	12
Rulajul anual	Km	60.000	60.000	60.000	60.000
Combustibil		Diesel	Electric	Diesel	Electric
Pret combustibil	<i>Lei/litru</i> Lei/KWh	3,8011	0,3558	3,8011	0,3558
Consum combustibil - mediu	litri/100 Km	46		36	
Consum energie electrica - mediu	KWh		160		120
Cost anual combustibil/energie electrica	Lei	88.946	34.154	77.543	25.616
Intretinere anuala / vehicul	Lei/an	71807,12	51290,8	71807,12	51290,8

Intretinere anuala infrastructura rapostata la un vehicul	Lei/an	0	11657	0	4662,8
TOTAL costuri exploatare anuale + recup. anuala investitie in infrastructura	Lei	160.753	97.102	149.350	81.569
Asigurare		2284,772	1175,0256	2284,772	2284,772
TOTAL taxe si asigurari anuale	Lei	2284,772	1175,0256	2284,772	2284,772
CO2	g/Km	1.037,40	0,00	904,40	0,00
Costuri emisie CO2 /vehicul - pe durata de viata	Lei	11609,2529	0	10120,88717	0
Nox	g/Km	0,60	0,00	0,60	0,00
РМ	g/Km	0,00	0,00	0,00	0,00
NMHC	g/Km	0,02	0,00	0,02	0,00
Costurile costurile anuale ale emisiilor/vehicul	Lei	0,79703106	0	0,797031055	0
Costurile externe anuale ale unui vehicul		11.610,05	0,0 0	10.121,68	0,00
Costurile anuale	Lei	174.648	98.277	161.756	83.854
Costul pentru durata de viata	Lei	3.447.988	3.324.211	3.444.829	3.454.217

Cursul euro la 10.10.2018: 4,6628 lei

*Estimările privind costurile de întreținere și mentenanță au fost realizate de către RATB pe baza experienței din exploatare.

** Consumul de combustibil a fost stabilit astfel:

- 46 l/100 km pentru Diesel Euro 6, conform cerintelor impuse in caietele de sarcini elaborate in cadrul RATB și PMB

- 36 l/100 km pentru Diesel Hibrid fara alimentare plug-in, valoare estimată conform studiilor care analizează performanțele autobuzelor hibrid.

Bugetul investiției

Urmare a ofertelor primite din partea producătorilor, rezultă o valoare estimată de achiziție pentru un troleibuz nou cu autonomie de 20 km de 460.000 euro, preț fără TVA. Pentru autobuzul hibrid, valoarea estimată este de 322.500 euro, preț fără TVA.

100 x 460.000 = 46.000.000 euro, respectiv 214.488.800 lei – troleibuze cu autonomie

130 x 322.500 = 41.925.000 euro, respectiv 195.487.890 lei – autobuze hibrid

Rezultă o valoare estimată a investiției de 409.976.690 lei fără TVA pentru achiziția a 100 troleibuze cu autonomie de 20 km și a 130 autobuze hibrid.

Achiziționarea și recepția mijloacelor de transport se va face în cel mult 24 de luni de la semnarea contractului de furnizare bunuri.

4.3. Descrierea avantajelor soluției recomandate

Soluția recomandată presupune achiziția a 100 troleibuze cu autonomie de 20 km și 130 autobuze hibrid fara incarcare (fara plug-in).

Avantajele soluției recomandate sunt:

- Nu necesită o infrastructură suplimentară (stație de incărcare) sau adaptări ale infrastructurii actuale
- Este varianta cea mai avantajoasă din punct de vedere tehnico-economic (comparație valori Life Cycle Cost Unitar - LCC)
- Operatorul are deja oameni instruiți pentru operarea și întreținerea mașinilor alese (hibrid și troleibuz)
- Alegerea soluției hibrid în detrimentul unei soluții electrice are avantajul utilizării în situații de calamitate
- Soluțiile tehnice adoptate sunt testate și au demonstrat viabilitatea în timp față de soluțiile noi
- Nu apar probleme de mediu suplimentare în perioada de operare
- Troleibuzele cu autonomie de 20 km vor oferi posibilitatea unor legături între diverse rețele de contact existente

4.4 Impactul asupra mediului

Principalul avantaj al troleibuzelor constă în emisii foarte scăzute de poluanți în marile orașe. Poluarea atmosferică în amonte se va produce dacă energia electrică este produsă prin metode fosile. Cu toate acestea, centralele electrice pot controla astfel de emisii mai eficient decât motoarele mici și, de asemenea, poluarea centralelor electrice are loc în zonele de poluare mai puțin critice decât în cazul în

TUM/I

care funcționează autobuzele. Totodată, autobuzele hibrid vor contribui la reducerea emisiilor de gaze cu efect de seră.

Sectorul transporturilor este unul dintre factorii cei mai generatori de poluare în zonele urbane, afectând calitatea aerului și nivelul zgomotului. Dintre toate modurile de transport întâlnite în regiune, cel motorizat, realizat cu autoturism personal are cel mai mare impact asupra mediului. Multe dintre problemele identificate pe parcursul proiectului și intervențiile dezvoltate pentru rezolvarea și îmbunătățirea lor au efecte asupra mediului din Regiunea București-Ilfov.

Ca stat membru al Uniunii Europene, România și-a asumat responsabilități și angajamente de protecție a mediului și de limitare a efectelor schimbărilor climatice, alăturându-se astfel demersurilor comune ale statelor preocupate de combaterea poluării.

Ca stat membru al Uniunii Europene, semnatara a Protocolului de la Kyoto, România s-a alăturat obiectivului comun al statelor Uniunii de reducere cu 20% până în 2020 a nivelului de emisii de dioxid de carbon.

Politicile europene în domeniul energiei și al mediului subliniază impactul negativ, asupra mediului pe care le au aglomerările urbane și creșterea numărului de autovehicule. Traficul urban generează 40% din emisiile de dioxid de carbon și 70% din celelalte emisii poluante.

Autovehiculele care funcționează cu motor cu combustie sunt un factor poluant care este luat din ce în ce mai mult în considerare. Orașele mari sau aglomerările urbane dense sunt afectate în mare măsură de transporturile cu eliberare de noxe.

Emisiile de poluanți ale autovehiculelor prezintă două mari particularități:

- în primul rând, eliminarea se face foarte aproape de sol, fapt care duce la realizarea unor concentrații ridicate la înălțimi foarte mici, chiar pentru gazele cu densitate mică și mare capacitate de difuziune în atmosferă.
- în al doilea rând, emisiile se fac pe întreaga suprafață a localității, diferențele de concentrații depinzând de intensitatea traficului și posibilitățile de ventilație a căilor rutiere.

Ca substanțe poluante, formate dintr-un număr foarte mare (sute) de substanțe, pe primul loc se situează gazele de eşapament. Volumul, natura și concentrația poluanților emiși depind de următorii factori:

- tipul autovehiculului
- natura combustibilului
- condițiile tehnice de funcționare

Indicatorii principali ai emisiilor gazelor de combustie din sursele mobile sunt :

- monoxidul de carbon (CO),

- dioxidul de carbon (CO2),
- metanul (CH4),
- oxizii de azot (NOx),
- amoniac (NH3),
- hidrocarburi poliaromatice (HC),
- pulberile în suspensie (PM),
- dioxidul de sulf (SO2),
- plumb (Pb),
- compusii organici volatili (COV) si altele.

Dioxidul de carbon (CO2), metanul (CH4) sunt considerate gaze cu efect de seră, gaze care contribuie la reducerea permeabilității atmosferei pentru radiațiile calorice reflectate de Pamânt spre spațiul cosmic, generând astfel fenomenul de încălzire globală.

La nivelul Uniunii Europene circa 28% din emisiile de gaze cu efect de seră sunt datorate transporturilor și 84% dintre acestea revin transportului rutier, cu mențiunea că 10% provin din traficul rutier urban, tendința la nivel mondial este de reducere a emisiilor de CO2 și CH4 prin tehnologii și echipamente inovative de propulsie a mijloacelor de transport rutiere în special.

Toate vehiculele electrice sunt considerate conforme cu limitele de emisii de benzină Euro 6. Cu toate acestea, ele diferă în ceea ce privește emisiile de CO2 dioxid de carbon respectiv emisiile de CO2 pot fi considerate 0 în cazul utilizării de energie electrică ce provine exclusiv din energie hidroelectrică curată, energie eoliană, fotovoltaică.

Objectivele strategiei naționale în domeniul transporturilor:

- Diminuarea emisiilor generate de rețeaua de transport urbană și interurbană în scopul reducerii impactului asupra mediului. Atingerea unor niveluri durabile de consum de energie pentru transporturi și diminuarea emisiilor de gaze cu efect de seră generată de activitatea de transport
- Reducerea zgomotului generat de mijloacele de transport pentru minimizarea impactului asupra sănătății populației
- Atingerea și încadrarea emisiilor de CO2 a vehiculelor sub 120 g/km

În cadrul Avizului de Mediu aferent PMUD 2016-2030 (aviz 40/09.01.2017), au fost identificate urmatoarele probleme de mediu generate de factori ce țin de transport, la nivelul zonei București:

- ✓ Depăşiri locale ale valorilor limită pentru poluanții atmosferici specifici (NOx, Sox, PM10, NMCOV, metale grele)
- ✓ Atingerea țintei de reducere a emisiilor GES la nivelul anului 2020 respectiv pentru sectorul Transporturi la nivelul anului 2030 reducerea de 20% față de nivelul din 2008 și 60% în anul 2050 față de anul 1990

Factorii derminanți pentru aceste probleme de mediu sunt:

- Nivelul poluanților generați de trafic
- Necesitatea soluționării congestiilor de trafic
- Dezvoltarea în curs a infrastructurii de transport
- Transferul de poluanți din aer
- Creșterea populației ce induce creșterea volumului de transport de călători, respectiv creșterea consumului de combustibil și a emisiilor de gaze cu efect de seră (GES)
- Necesitatea dezvoltării alternativelor la transportul individual
- Investiții pentru fluentizare trafic

Astfel, printre măsurile specifice de limitare a impactului asupra mediului se regasesc următoarele propuneri:

- Implementarea şi extinderea sistemelor de transport inteligent pentru optimizarea traficului
- Încurajarea transportului cu vehicule electrice
- Creșterea ponderii transportului public în defavoarea transportului individual
- Maximizarea utilizării infrastructurii deja existente pentru introducerea de trasee noi
- Promovarea mijloacelor de transport cu utilizare de combustibili alternativi

Proiectul Achiziționare mijloace de transport mai puțin poluante necesare îmbunătățirii transportului public de călători în Municipiul București contribuie la atingerea masărilor specifice de limitare a impactului asupra mediului având în vedere obiectivul specific ce constă în dotarea cu mijloace de transport noi, mai puțin poluante a flotei de mijloace de transport care operează pe traseele din Municipiul București. Acesta, contribuie direct la atingerea urmatorilor indicatori de rezultat ai PMUD 2016-2030 identificați în cadrul avizului de mediu:

- ✓ Nr. Vehicule noi de autobuze ecologice valoare țintă 2030 250 buc.
- ✓ Emisii GES provenite din transport rutier valoare tintă 2030 1348 kTone echiv. CO2/an
- Creștere număr pasageri în transportul public (zilnic) valoare țintă 2030 54%

5.1 Corelarea investiției cu Planul Integrat de Calitate a Aerului în Municipiul București 2018 – 2022 și Planulului de Mobilitate Urbana Durabila Bucuresti – Ilfov 2016-2030 vizate de proiectele de investiții

Proiectul vine în completarea măsurilor prevăzute în Planul Integrat de Calitate a Aerului în Municipiul București 2018 – 2022 privind îmbunătățirea calității aerului și pune în aplicare măsurile prezentate în Planul de Mobilitate Urbană Durabilă (PMUD) 2016-2030 elaborat pentru regiunea București –Ilfov, document strategic aprobat în luna martie 2017 de către CGMB prin hotărârea nr. 90 din 29.03.2017.

Politicile dezvoltate și implementate la nivel european și național pentru îmbunătățirea calității aerului urmăresc o dezvoltare echilibrată, în concordanță cu capacitatea de asimilare și regenerare a mediului, iar documentele legislative care reglementează acest domeniu au ca principale obiective limitarea și controlul producerii emisilor nocive prin identificarea activităților generatoare de emisii și reducerea cantităților de poluanți emiși concomitent cu stabilirea de valori limită și ținte privind concentrațiile de poluanți în aer și crearea condiților ca acestea să nu poată fi depășite.

Reducerea emisiilor de poluanți evacuate în atmosferă de activitățile umane este considerată una din principalele căi de îmbunătățire a calității aerului și este realizată atât prin stabilirea de norme privind emisiile la nivel național, cât și prin reglementări specifice unor surse sau domenii de activitate. Reglementarea emisiilor specifice unor surse sau domenii de activitate se realizează prin impunerea utilizării celor mai bune tehnici, introducerea de norme privind emisiile sau stabilirea de cerințe privind compoziția produselor.

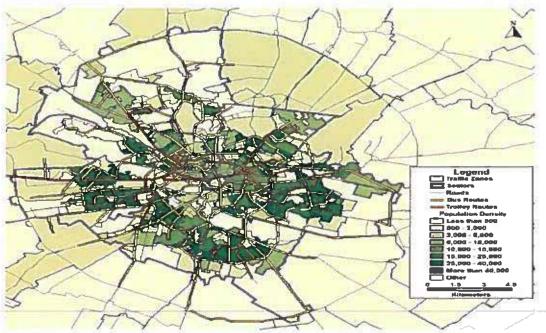
Stabilirea unor limite sau ținte ale concentrațiilor de poluanți în aerul înconjurător și crearea condițiilor ca acestea să nu fie depășite reprezintă cel mai important mijloc legislativ prin care se asigură prevenirea și reducerea efectelor poluanților din aer asupra sănătății populației și a mediului. Aceste reglementări sunt cuprinse în Directiva 2008/50/UE a Parlamentului European și a Consiliului din 21 mai 2008 privind calitatea aerului și un aer mai curat pentru Europa, și Directiva 2004/107/UE a Parlamentului European și a Consiliului din 15 decembrie 2004 privind arsenul, cadmiul, mercurul, nichelul și hidrocarburile aromatice policiclice (PAH) în aerul înconjurător, ambele transpuse în legislația națională prin Legea nr. 104/2011 privind calitatea aerului înconjurător.

Conform Legii nr. 104/2011 privind calitatea aerului înconjurător, în toate ariile din zone și aglomerări în care, în urma evaluării calității aerului, s-au constatat niveluri ale poluanților care depășesc valorile limită sau valorile țintă prevăzute de lege trebuie elaborate planuri de calitate a aerului care să conducă la realizarea obiectivelor de calitate a aerului. Primăria Municipiului București a inițiat acțiunile legale și a înființat, prin Dispoziția Primarului General nr. 1528/06.20.2015 completată cu D.P.G nr. 69/11.01.2016 și D.P.G. 1290/22.09.2017, Comisia Tehnică pentru elaborarea Planului Integrat de

calitate a Aerului în Municipiul București. Astfel, după elaborarea documentației necesare, Consiliul General al Municipiului București prin hotărârea 325/14.06.2018 a fost aprobat Planul Integrat de Calitate a Aerului în Municipiul București 2018 – 2022.

În luna iulie 2007, Agenția de Protecție a Mediului Buucurești a inițiat elaborarea Programului de Gestionare a Calității Aerului în Municipiul București – PIGCA, document elaborat de către Comisia Tehnică înființată la nivelul Municipiului București și aprobată prin Ordinul de Prefect nr. 349/07.06.2007. Consiliul General al Municipiului București prin hotărârea 347/25.11.2008 a aprobat Programul Integrat de Gestionare a Calității Aerului în Municipiul București. Printre măsurile curpinse în PIGCA și care vizează obiectivul prezentului studiu de oportunitate, se evidențiază "promovarea unui transport în comun integrat de o calitate înaltă și nepoluant prin care s-a urmărit: Continuarea programelor de modernizare a infrastructurii transportului public (căi de rulare și parc RATB); Extinderea și integrarea superioară a traseelor de transport public de suprafață și subteran, urban și regional, inclusiv cu sistemul feroviar, prin utilizarea preponderentă a vehiculelor nepoluante;..."

Achiziția de troleibuze pentru Municipiul București corespunde măsurilor de îmbunătățire a calității aerului propuse de Primăria Municipiului București în cadrul Planului Integrat de Calitate a Aerului în Municipiul București 2018 2022 în scopul reducerii poluării și încadrării concentrațiilor de poluanți în limitele stabilite de Legea nr. 104/2011 privind calitatea aerului înconjurător.


Principalele măsuri propuse în PICA care vizează reducerea emisilor sunt:

- Limitarea şi gestionarea mai eficientă a traficului în zona centrală a municipiului;
- Salubrizarea mai eficientă a străzilor;
- Promovarea, îmbunătățirea și extinderea transportului public;
- Eliminarea autovehiculelor vechi din circulație;
- Continuarea implementării proiectelor majore de infrastructură.

Implementarea Planului Integrat de Calitate a Aerului este intrinsec legată de Planul de Mobilitate Urbană durabilă 2016 – 2030 pentru Regiunea București – Ilfov (PMUD) care va asigura punerea în aplicare a conceptelor europene de planificare și de management pentru mobilitatea urbană durabilă adaptate la condițiile specifice regiunii București – Ilfov reprezentând strategia de transport pentru următorii 15 ani cu o viziune coerentă de dezvoltare a mobilității la nivelul capitalei și în zonele limitrofe.

Harta 5. Rețeaua de autobuz și troleibuz

Sursa: Planul de Mobilitate Urbanā Durabilā

Planul de Mobilitate Urbană Durabilă este un document strategic și un instrument de politică de dezvoltare, folosind un software de simulare a transporturilor, având ca scop identificarea soluțiilor de satisfacere a nevoilor de mobilitate ale persoanelor și întreprinderilor pentru a îmbunătăți calitatea vieții, dezvoltarea economică, contribuind în același timp la atingerea obiectivelor europene privind protecția mediului și eficiență energetică.

Planul de mobilitate urbană durabilă este un plan strategic pentru oameni și locuri și își propune realizarea unui sistem de transport eficient, integrat, durabil și sigur, proiectat să promoveze dezvoltarea economică și teritorială incluzivă din punct de vedere social și să asigure o calitate ridicată a vieții.

Planul de Mobilitate Urbană Durabilă vizează îndeplinirea viziunii de dezvoltare a mobilității, prin abordarea următoarelor obiective strategice:

- I. ACCESIBILITATE Asigură că toți cetățenii au opțiuni de transport, care le permit accesul la destinații și servicii esențiale;
- II. SIGURANȚĂ ȘI SECURITATE Îmbunătățirea siguranței și securității în circulație;
- III. MEDIU Reducerea poluării aerului şi fonice, a emisiilor de gaze cu efect de seră şi a consumului de energie;
- IV. EFICIENȚĂ ECONOMICĂ Îmbunătățirea eficienței şi rentabilității transportului de persoane şi mărfuri;
- V. CALITATEA MEDIULUI URBAN Contribuie la creșterea atractivității și calității mediului urban și la proiectarea unui mediu urban în beneficiul cetățenilor, economiei și societății în general.

Politicile și măsurile definite în Planul de Mobilitate Urbană Durabilă acoperă toate modurile și tipurile de transport din întreaga aglomerație urbană, publice și private, de pasageri și de marfă, motorizate și nemotorizate, în mișcare și staționare. Pentru a atinge Obiectivele Operaționale enumerate mai sus, PMUD utilizează 7 politici de transport. Aceste politici grupează proiecte similare din diferite tipuri de intervenții și le ordonează în funcție de priorității pentru eficiență maximă.

Astfel, politicile de transport sunt următoarele:

I. Reforma instituțională și intărirea capacității administrative

II. Transport public local și feroviar inclusiv intermodalitate și multimodalitate

III. Deplasări nemotorizate

IV. Siguranța rutieră

V. Transport rutier și politică de parcare

VI. Imbunatățirea integrării dintre planificarea urbana și planificarea infrastructurii de transport, spații pietonale

VII. Managementul mobilitatii și ITS

Politicile și măsurile definite în Planul de Mobilitate Urbană Durabilă acoperă toate modurile și tipurile de transport din întreaga aglomerare urbană, inclusiv cele publice și private, de pasageri și de marfă, motorizat și nemotorizat, în mișcare și parcările.

Planul de mobilitate prevede următoarele proiecte, legate de invesția propusă în studiul de oportunitate:

1	C-10	Modernizarea rețelei de troleibuze
1	C-12	Îmbunătățirea operării și întreținerii autobuzelor și a cerințelor pentru flota de autobuze inclusiv achiziția de autobuze

PRIVIDOS!

Activitățile propuse prin studiul de oportunitate corespund PMUD: Obiectivul strategic "Impactul asupra mediului", Politica sectorială "Transport public local", index din planul de acțiune "C-10 Modernizarea rețelei de troleibuze" și "C-12 Îmbunătățirea operării și întreținerii autobuzelor și a cerințelor pentru flota de autobuze inclusiv achiziția de autobuze".

Proiectul vizat răspunde la toate obiectivele menționate în PMUD, deoarece aduce îmbunătățiri sistemului de transport public cu troleibuzul și cu autobuzul, în vederea:

- Reducerii emisiilor de gaze cu efect de seră precum și reducerea poluării fonice
- Creșterii atractivității acestui mod de transport și, ca urmare, creșterea numărului de utilizatori și a cotei modale a transportului public;
- Creșterii siguranței și a securității activității de transport public

Îmbunătățirea flotei de autobuze va schimba și va încuraja în general modul de călătorie de la mașina privată la autobuz.

Totodată, investiția propusă este în acord cu Legea nr. 37/2018, intrată în vigoare din ianuarie 2018, însă se aplică începând de anul viitor, privind promovarea transportului ecologic care impune obligația achiziționării de mijloace de transport acționate prin tehnologii verzi. Conform acesteia, autoritățile publice locale, regiile autonome și societățile aflate în subordinea unităților administrativ-teritoriale vor achiziționa mijloace de transport călători acționate prin motoare cu propulsie electrică, tehnologii verzi de tipul Electrice, Hybrid, Hybrid Plug-In, Hydrogen (FCV), motoare cu propulsie pe gaz natural comprimat, motoare cu propulsie pe gaz natural lichefiat și motoare cu propulsie pe biogaz, în proporție de minimum 30% din necesarul de achiziții viitoare. Procentul va fi calculat din totalul numărului de autovehicule achiziționate într-un an.

5.2 Descrierea și justificarea numărului și parametrilor tehnici ai vehiculelor ce vor fi achiziționate

Troleibuze

Conform raportului de activitate al RATB pe anul 2017, pentru realizarea programului de transport au fost scoase zilnic pe trasee un număr de 177 troleibuze. Având în vedere datele furnizate de RATB, parcul de inventar înregistrează 302 troleibuze. Dintre acestea, 200 troleibuze marca lkarus au fost puse în funcțiune în anul 1997, fiind depășite din punct de vedere tehnologic și cu mult din punct de vedere al duratei de funționare. Parcul RATB a fost dotat cu încă 100 troleibuze marca Irisbus care au fost puse în funcționare în anul 2007 (85 buc), respectiv anul 2008 (15 buc). Aceste troleibuze vor fi supuse unui prroces de modernizare, urmând să fie dotate cu instalații de climatizare.

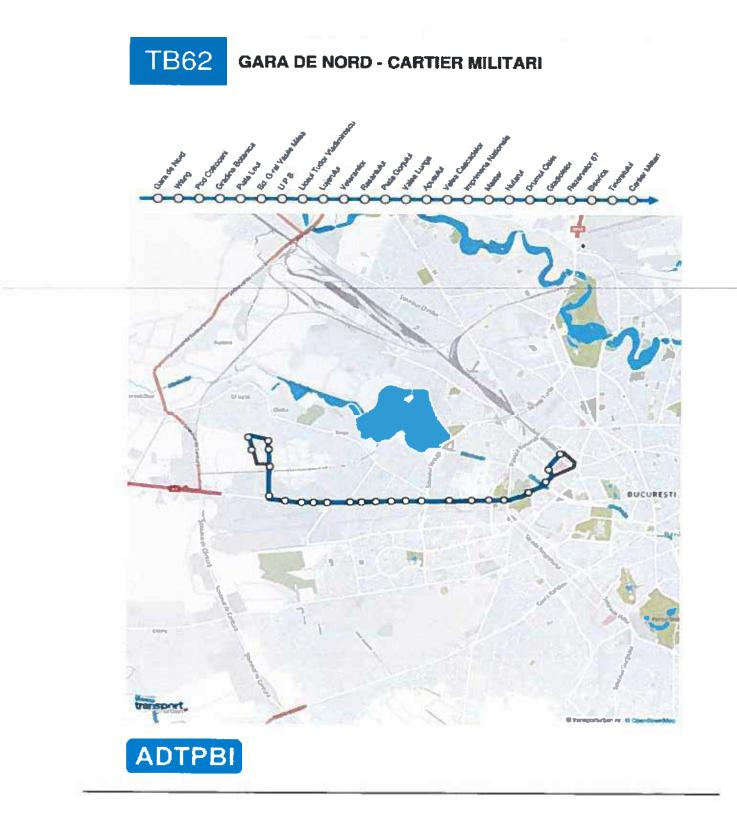
Prezentul studiu propune înlocuirea a 100 de troleibuze Ikarus cu unele noi, moderne, dotate cu sistem de climatizare, sistem de monitorizare și toate dotările necesare asigurării unui transport de calitate în Municipiul București.

Având în vedere extinderea cartierelor rezidențiale, precum și suprapunerile de pe trasee a troleibuzelor cu autobuze, o parte de traseele existente pe care circulă troleibuze vor suferi modificări astfel încât să fie preluați cât mai mulți pasageri din zonele în care nu circulă alte mijloace de transport. Totodată, se va înființa o nouă linie de troleibuz care va utiliza rețeaua de contact existentă. Această rețea nu este încă pusă în exploatare din cauza nefinalizării lucrărilor pentru Park&Ride la capătul Străulești.

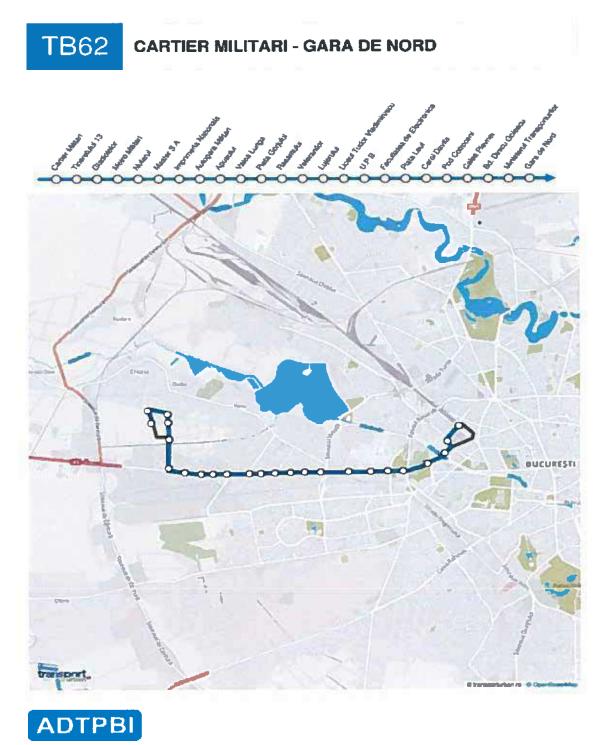
Troleibuzele noi vor avea autonomie de 20 km pentru a oferi posibilitatea unor legături între diverse rețele de contact existente. Astfel, traseele pe care vor circula noile troleibuze cu autonomie se vor modifica după cum urmează:

1) Linia 62 va circula între capătul de linie Cartier Militari Residence (comun cu linia 178) si capătul de linie Gara de Nord.

Infrastructura de troleibuz aferenta liniei 62 strabate arterele B-dul Iuliu Maniu, Sos. Cotroceni, str. Ctin Noica, Str. Baldovin Parcalab, B-dul Garii de Nord, P-ta Garii de Nord, str. Witing, Calea Plevnei. Depoul Bujoreni deserveste aceasta linie de troleibuz.

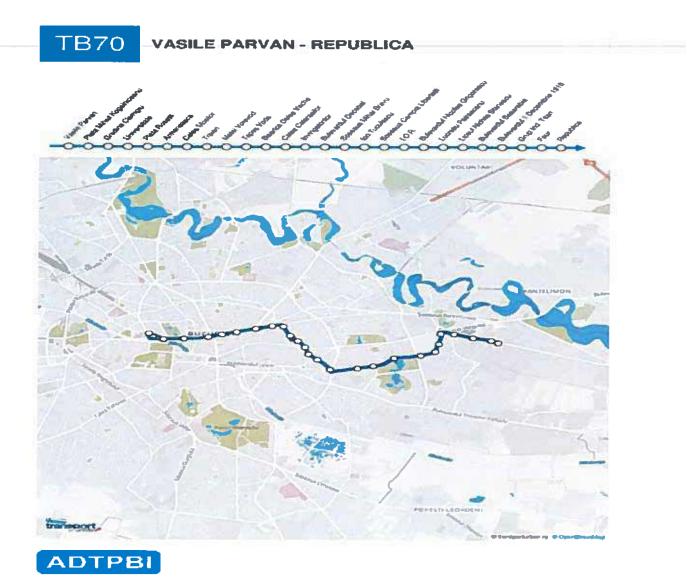

Distanța ce nu va fi acoperită de rețeaua de contact este de 4 km (dus-întors).

Vizualizarea grafică a noului traseu, împreună cu stațiile aferente sunt prezentate mai jos:


" Ninoosi"

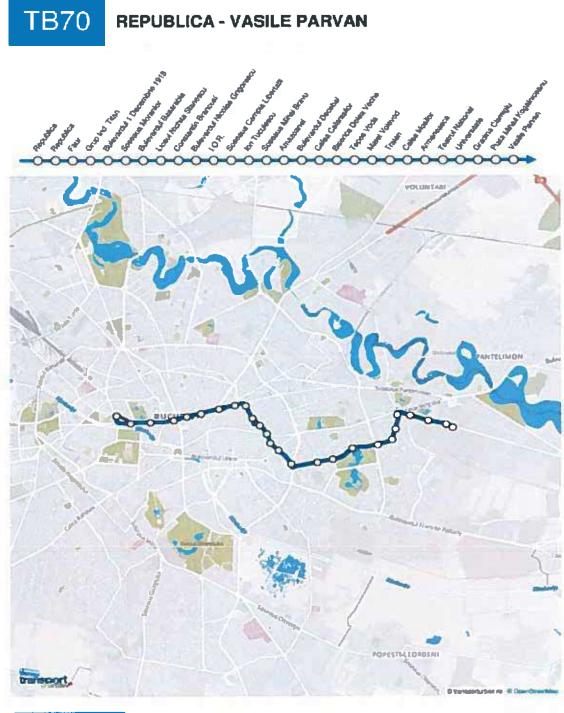
Traseu tur

Traseu retur


2) Linia 70, cu capătul de linie în prezent la Bd Basarabia, va fi prelungită pe Bd. Basarabia, până în zona capătului de linie Republica.

Infrastructura de troleibuz aferenta liniei 70 strabate arterele str. Lucretiu Patrascanu, str. C-tin Brancusi, str. Baba Novac, str. Dristor, str. Delea Noua, str. Delea Veche, str. Budila, str. Tepes Voda, str. Popa Nan, B-dul Pache Protopopescu, B-dul Carol, B-dul Regina Elisabeta, B-dul Mihail Kogalniceanu, Calea Plevnei, str. Vasile Parvan.

Depoul Vatra Luminoasa deserveste aceasta linie de troleibuz. Distanța ce nu va fi acoperită de rețeaua de contact este de 2,5 km (dus – întors).


Vizualizarea grafică a noului traseu, împreună cu stațiile aferente sunt prezentate mai jos:

Traseu tur

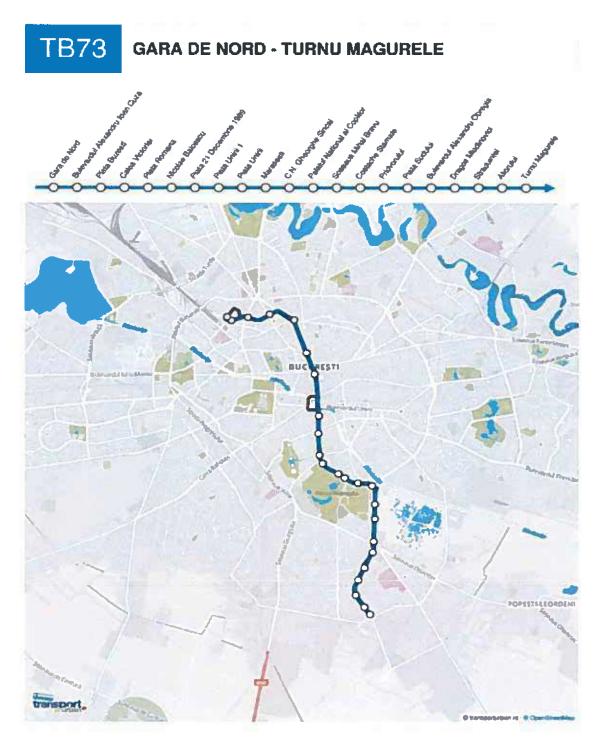
WILL FOCININ DE DE

 Linia 73, cu capătul de linie în prezent la Turnu Măgurele, va fi prelungită de la capatul de linie P-ta Unirii prin Bd. N.Balcescu - Piata Romana - str. Gh. Manu - str. Occidentului până la Gara de Nord cu întoarcere prin str. Varnali.

Infrastructura de troleibuz aferenta liniei 73 strabate arterele B-dul Dimitrie Cantemir, B-dul Tineretului, Calea Vacaresti, str. Nitu Vasile, B-dul Alexandru Obregia.

Depoul Berceni deserveste aceasta linie de troleibuz.

Distanța ce nu va fi acoperită de rețeaua de contact este de 5,8 km (dus - întors).


Vizualizarea grafică a noului traseu, împreună cu stațiile aferente sunt prezentate mai jos:

Traseu tur

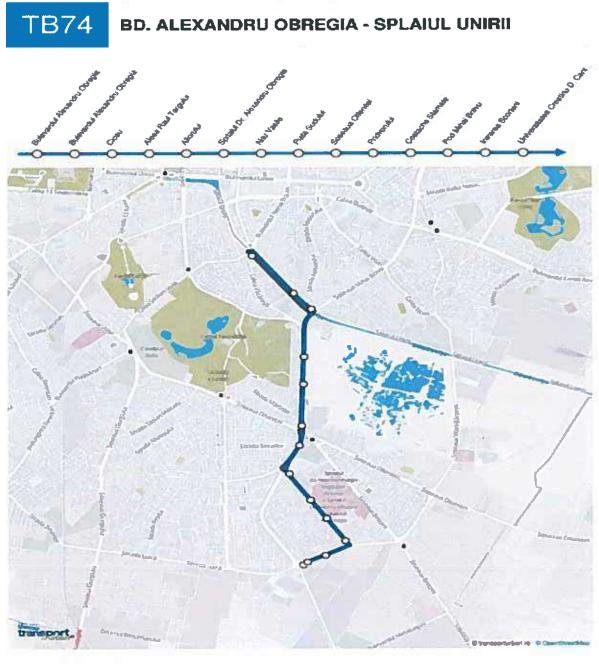
Traseu retur

4) Linia 74 va circula între capătul de linie Bd. A. Obregia și Podul Timpuri Noi. Traseul se va modifica după cum urmează:

- pe sensul Piața Unirii se va modifica traseul actual de la pasajul Văcărești, se va circula pe Splaiul Unirii până Podul Timpuri Noi cu intoarcere în capatul de linie al autobuzului 323.

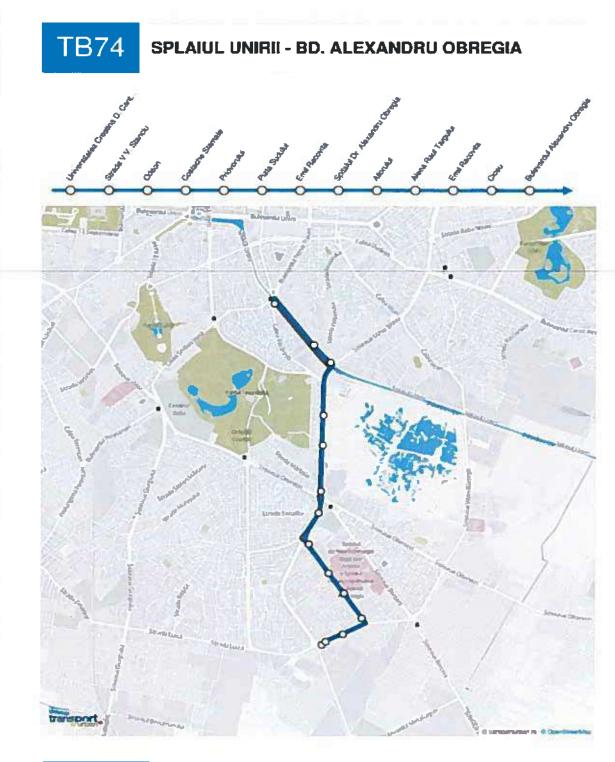
- pe sensul Bd. A. Obregia din capatul de linie Pod Timpuri Noi se va circula pe Splaiul Unirii pina la Pasajul Vacaresti dupa care traseul actual prin Calea Vacaresti, Piata Sudului - Capatul de linie A. Obregia.

Infrastructura de troleibuz aferenta liniei 74 strabate arterele B-dul Dimitrie Cantemir, B-dul Tineretului, Calea Vacaresti, str. Nitu Vasile, str. Emil Racovita, str. Turnu Magurele.


Depoul Berceni deserveste aceasta linie de troleibuz.

Distanța ce nu va fi acoperită de rețeaua de contact este de 3,2 km (dus - întors).

Vizualizarea grafică a noului traseu, împreună cu stațiile aferente sunt prezentate mai jos:


Traseu tur

Traseu retur

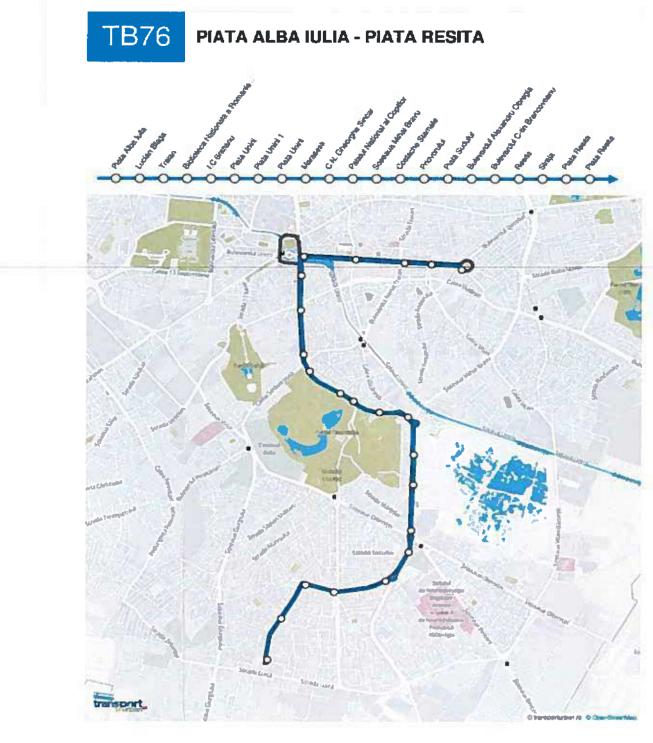
5) Linia 76, cu capătul de linie în acest moment la Piața Reșița, va fi prelungită de la capătul de linie Piața Unirii prin - Bulevardul Unirii, pina la capatul de linie P-ta Alba Iulia.


Infrastructura de troleibuz aferenta liniei 76 strabate arterele B-dul Dimitrie Cantemir, B-dul Tineretului, Calea Vacaresti, str. Nitu Vasile, str. Izvorul Rece, str. Resita.

Depoul Berceni deserveste aceasta linie de troleibuz.

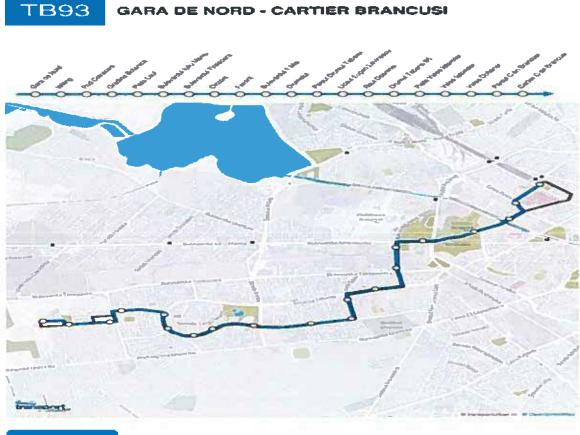
Distanța ce nu va fi acoperită de rețeaua de contact este de 5,5 km (dus = întors).

Vizualizarea grafică a noului traseu, împreună cu stațiile aferente sunt prezentate mai jos:


Traseu tur

Traseu retur

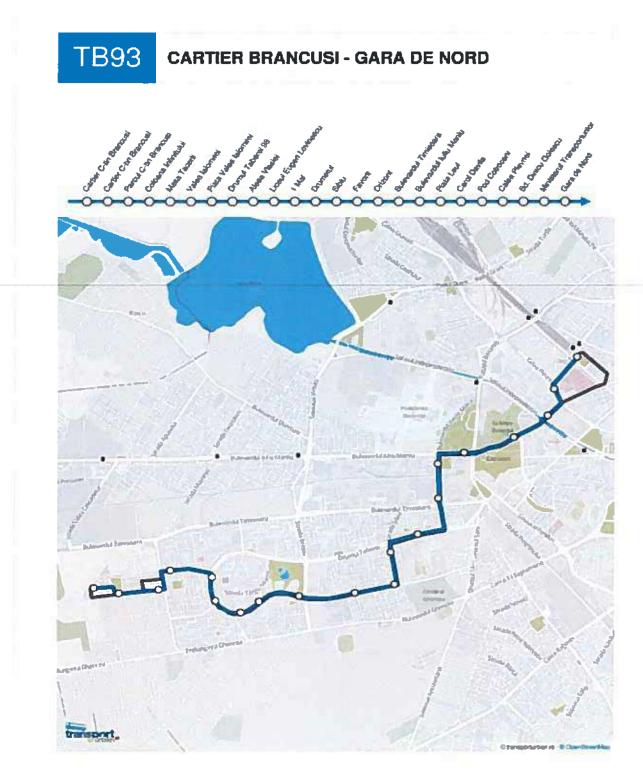
6) Linia 93, cu capătul de linie în acest moment la Valea Argeșului, va fi prelungită de la intersectia Drumul Taberei cu str. Valea Argeșului prin str. Drumul Taberei, prin str. Valea lalomiței, str. Valea Oltului după care traseu comun cu linia 168 până în Cartierul Brâncuși. Întoarcerea se va realiza în zona capătului de linie actual al autobuzului 168. De asemenea, se impune realizarea unui capăt de linie funcțional atât pentru linia de troleibuz 93 cât și pentru linia de autobuz 168 deoarece capătul de linie actual este impropriu pentru staționarea troleibuzelor și autobuzelor.


Infrastructura de troleibuz aferenta liniei 93 strabate arterele str. Valea Argesului, B-dul Drumul Taberei, B-dul 1 Mai, str. Sibiu, B-dul Drumul Taberei, B-dul Vasile Milea, Sos. Cotroceni, str. C-tin Noica, Calea Plevnei, str. Mircea Vulcanescu, str. Parcalab Baldovin, B-dul Garii, str. Witing, Calea Plevnei.

Depoul Bujoreni deserveste aceasta linie de troleibuz.

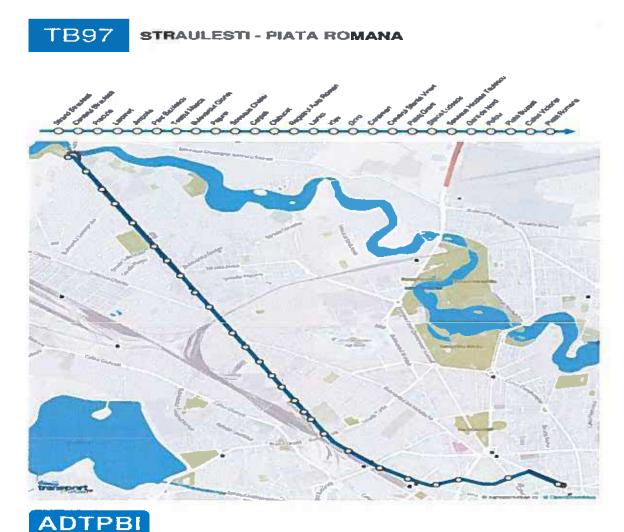
Distanța ce nu va fi acoperită de rețeaua de contact este de 3,5 km (dus - întors).

Vizualizarea grafică a noului traseu, împreună cu stațiile aferente sunt prezentate mai jos:


Traseu tur

Traseu retur

7) De asemenea, se va reînființa Linia 97, între capătul de linie Străulești și Piața Romană. Această linie a fost desființată în anul 2011 când au început lucrărille de construcție la magistrala de metrou M4 (între Gara de Nord și Străulești). Linia străbate arterele Bd. Bucureștii Noi, Calea Griviței, Str. Gheorghe Manu, Bd. Lascăr Catargiu.


Reînființarea liniei 97 va contribui la creșterea numărului de pasageri și a ponderii transportului ecologic prin preluarea persoanelor care își vor lăsa autoturismele personale în noul punct Park&Ride Străulești.

Depou care deservește această linie este Bucureștii Noi.

Distanța ce nu va fi acoperită de rețeaua de contact este de 200 m în zona Piața Romană.

Vizualizarea grafică a trascului, împreună cu stațiile aferente sunt prezentate mai jos:

Traseu tur

Traseu retur

În tabelul următor pot fi comparate diferențele dintre lungimile traseelor, actuale și modificate:

Nr. cet.	INDICATIIV LINIE	TRASEU ACTUAL (MODIFICAT)			LINIE	(MODIFICAT)		CU		CURS		Nr. KM CURSA TRASEE PROPUSE
E	61	MASTER S.A	PIAȚA ROSETTI	19,50	19,50							
2	62	GARA DE NORD	GRUP ȘCOLAR AUTO (CARTIER MILITARI RESIDENT)	18,60	21,00							
3	65	DRIDU	SFINȚII VOIEVOZI	13,20	13,20							
4	66	SPITALUL FUNDENI	VASILE PÂRVAN	18,80	18,80							
5	69	VALEA ARGEŞULUI	BAICULUI	26,40	26,40							
6	70	BD. BASARABIEI (REPUBLICA)	VASILE PÂRVAN	17,80	20,40							
7	73	TURNU MÅGURELE	PIAȚĂ UNIRII (GARĂ DE NORD)	12,90	22,30							
8	74	BD. ALEXANDRU OBREGIA	PIAȚA UNIRII(POD TIMPURI NOI)	13,70	10,80							
9	76	ΡΙΑΤΑ REŞITA	PIAȚA UNIRII (P-TA ALBA IUUIA	14,40	19,80							
10	79	BD. BASARABIA	GARA DE NORD	19,40	19,40							
11	85	GARA DE NORD	BAICULUI	15,20	15,20							
12	86	ARENA NAȚIONALĂ	DRIDU	24,60	24,60							
13	90	ARENA NAȚIONALĂ	VALEA AREGEȘULUI	27,20	27,20							
14	91	DEPOUL ALEXANDRIA	PIAȚA ROSETTI	19,10	19,10							
15	93	VALEA ARGEȘULUI (CARTIER BRINCUSI)	GARA DE NORD	15,60	18,50							
16	96	DEPOUL ALEXANDRIA	GARA DE NORD	15,80	15,80							
17	97"	STRAND STRAULESTI	P-TA ROMANA		19,10							
	TOTAL KM			282,20	320,10							

Tabel 14. Lungimi trasee troleibuze

-01

Având în vedere achiziția propusă de 100 troleibuze cu autonomie, precum și modificarea traseelor pe care acestea vor circula, în tabelul de mai jos sunt prezentate sintetic datele de exploatare prognozate și parcul propus pentru fiecare linie.

A (144 +											
Línia	Capat1	Capat2	Lungim e cursa	Parc max actual	Parc propus	Depoul	Nr.curse /zi	Interval succedare	de	Viteza comerc iala	Km traseu/zi
								vf.	Intre vf		
62	Cartier Militari Residence	Gara de Nord	20.100	10	12	Bujoreni	101,0	9-10.	16-18	12	2.030,10
70	Republica	Vasile Pirvan	20.400	13	14	Vatra Luminoasa	125,5	7-8.	9-11.	13	2.560,50
73	Tumu Magurele	Gara de Nord	22.300	9	15	Berceni	109,5	8-10.	16-18	11	2.441,60
74	Bd. Obregia	Pod Timpuri Noi	10.800	6	8	Berceni	116,0	7-8.	10-11.	12	1.252,80
76	Pta Resita	P-ta Alba lulia	19.800	16	23	Berceni	197,5	4-6.	9-11.	12	3.911,10
93	Gara de Nord	Cartier Brancusi	18.500	6	11	Bujoreni	102,0	9-10.	12-13.	13	1.887,00
97	Straulesti	Pta Romana	19.100	0	13	Bucurestii Noi	132,5	6-7.	9-10.	14	2.530,80
					96						16.613,90

Tabel 15. Alocarea noilor troleibuze cu autonomie pe trasee

achiziționat va rămâne în cele patru depouri care deservesc liniile pentru a asigura o rezervă în caz de defecte. Menționăm că pe aceste linii nu pot fi introduse troleibuzele fără autonomie existente în parcul actual al operatorului, întrucăt aceste trasee au suferit modificări Așa cum reiese din tabelul de mai sus, pe linii vor circula 96 de troleibuze cu autonomie. Diferența dintre acestea și numărul total față de situația actuală prin introducerea unor zone fără rețea de contact.

92

Pentru această soluție a fost propusă și comparată varianta de autobuz electric. În urma analizei economice a reieșit un cost pe durata de viață la troleibuz de 794.501 euro și unul de 824.788 pentru autobuzul electric. Conform acestor date, rezultă avantajul achiziției de noi troleibuze pentru modernizarea parcului.

Din punct de vedere al numărului de troleibuze noi ce se vor achiziționa, vom oferi o justificare a investiției ce presupune achiziția a 100 de troleibuze.

În acest moment, pentru realizarea programului de transport, STB scoate pe traseu 177 troleibuze. Având în vedere vechimea parcului și dotările de care aceste mijloace de transport dispun, Primăria Municipiului București a aprobat modernizarea a 100 de troleibuze prin dotarea acestora cu aer condiționat. Urmare a acestei decizii, cele 100 de troleibuze care vor beneficia de aceste îmbunătățiri vor trebui utilizate pentru următorii 5 ani. În această situație, considerăm oportună achiziția a 100 troleibuze noi atât pentru a asigura necesarul programat pentru realizarea programului de transport, cât și a asigura operatorului o rezervă de mijloace de transport în caz de defecte sau situații care necesită suplimentarea parcului scos pe trasee.

Troleibuzele de lungime 12m cu autonomie de 20 km ce vor fi achiziționate vor avea următoarele caracteristici tehnice:

Descriere	Valoare	U.M.
Lungime	12.000 +/- 350	mm
Lățime (fără oglinzi exterioare)	2.550	mm
înălțime (maxim)cu captatorii coboriti si asigurati	3,600	mm
Uși acces număr/foi ușă	3/2	-
Lățime ușă (minim)	1.200	mm
Deschidere uși (minim)	1.200	mm
Arie vitrată uși (minim)	80	%
Parbriz/lunetā/geam	Duplex	•
Capacitate pasageri (minim)	96	(iii)
Suprafață utilă/călător	0,125	m²
Locuri pe scaune (pasageri + conducātor auto minim)	24 + 1	•
Viteza maximā (limitatā cu DLV reglabil)	60/50	km/h
Viteza mers înapoi	5	km/h
	Lungime Lăţime (fără oglinzi exterioare) înălțime (maxim)cu captatorii coboriti si asigurati Uşi acces număr/foi uşă Lățime uşă (minim) Deschidere uşi (minim) Arie vitrată uşi (minim) Parbriz/lunetă/geam Capacitate pasageri (minim) Suprafață utilă/călător Locuri pe scaune (pasageri + conducātor auto minim) Viteza maximă (limitată cu DLV reglabil)	Lungime12.000 +/- 350Lățime (fără oglinzi exterioare)2.550înălțime (maxim)cu captatorii coboriti si asigurati3.600Uşi acces număr/foi uşă3/2Lățime uşă (minim)1.200Deschidere uşi (minim)1.200Arie vitrată uşi (minim)80Parbriz/lunetă/geamDuplexCapacitate pasageri (minim)96Suprafață utilă/călător0,125Locuri pe scaune (pasageri + conducător auto minim)24 + 1Viteza maximă (limitată cu DLV reglabil)60/50

Tabel 16. Specificații tehnice minimale - troleibuze

	Acceleratie medie de la 0 la 40km/h: * La sarcina maxima: *la vehicul gol :	0,9-1.5 1.1 -1.5	m/s2 m/s2
	decelerația: decelerație medie de urgență minim garantată (de la 50km/h la 5 km/h) -cu frână electrică	min. 5 între 1,1 și 1,5	m/s ²
	Autonomie (minim)	20	km
Caracteristici	Manevrabilitatea (cerc)	12.500	mm
dinamice	Manevrabilitatea (coroană)	7.500	mm
	Stabilitate în rampă/pantă (minim)	12	%
	Unghi de atac (minim)	7	0
	Unghi de degajare (minim)	7	0
Caracteristici mecanice	Suspensie față	Funcție "îngenunchere" (kneeling)	
	Suspensie spate	Funcție "îngenunchere" (kneeling)	
	Sistem de frânare	Pneumatică cu sisteme EBS,ABS,	
	Sistem de frânare auxiliar	Electrică recuperativă și	

	Frână de staționare pantă	12	70
F	Frână de stație	BUS-STOP	
	Sistem direcție	Servoasistatā	
-	Aer comprimat	Compresor	
	Anvelope lață	Tubeless	*
	Anvelope spate	Tubeless	-
Echipamente	Sistem încălzire	DA	(0)
auxiliare	Sistem aer condiționat	DA	2
Motor	Tip	Asincron	30 4 07
electric	Invertor	DA	Ť
-	Răcire	Aer	_
	Recuperare energie de frânare	DA	-
Captatorii de	Inaltimea retelei	4000-6000mm	

curent	Forta apasare	9±1	daN
	Pozitia dezaxare troleibuz pina la limita de minim	±4500mm	
	Distanta intre firele retelei de contact	600±100mm	
	Rezistenta izolatie captator (minim)	10	MΩ
Sistem	Consum energie (maxim)	1,5	kWh/km
energie	Sistem de răcire	Aer	-
electrică	Tehnologie IGBT	DA	
010011100	Recuperare energie	DA	2
	Autonomie troleibuz electric (min)	20	km
	Stabilizare tensiune încărcare	-30 + 20	%
Auxiliare	Echipament Wi-Fi	DA	1
	Sistem diagnosticare	DA	5
	Sistem numărare călători	DA	
	Sistem audio-video informare călători	DA	50
	Sistem supraveghere video	DA	
Garanție	Durată de funcționare	12	ani
	Garanție troleibuz cu	240.000	km
	autonomie	sau	
		4	ani

4 10 00

Autobuzele hibrid

Pentru această soluție a fost propusă și comparată varianta de autobuz diesel Euro 6 cu autobuz hibrid. În urma analizei economice a reieșit un cost pe durata de viață la autobuz diesel Euro 6 de 3.447.988 lei și unul de 3.444.829 lei pentru autobuzul hibrid. Conform acestor date, rezultă avantajul achiziției de autobuze hibrid pentru modernizarea parcului.

Din punct de vedere al numărului de autobuze hibrid ce se vor achiziționa, vom oferi o justificare a investiției ce presupune achiziția a 130 de autobuze hibrid fără plug-in.

Parcul RATB de mijloace de transport în comun –autobuze- este de 1147 unități, din care 1000 de autobuze sunt de tipul Mercedes Euro 3 și Euro 4, conform Studiului de oportunitate privind reorganizarea RATB elaborat de către AMRSP. Dintre acestea 1000, doar 909 sunt active: 434 Euro 3 și 475 Euro 4. Dintre acestea, conform raportului de activitate al RATB, în anul 2016 a fost asigurată menținerea activității de transport public de persoane în condiții de confort și siguranță pe trasee cu un parc circulant programat 835 autobuze. Operatorul dispune de 1241 locuri de parcare pentru autobuze în cele 8 autobaze.

Pentru a reduce poluarea și pentru a reînnoi parcul de mijloace de transport, au fost demarate activități pentru modernizarea parcului auto al operatorului de transport. În acest sens, prin hotărârea nr. 394/21.12.2016 a Consiliului General al Municipiului București s-a aprobat achiziția a 400 autobuze urbane: 320 din gama 12m, 50 din gama 10 m și 30 din gama 18 m. Cele 400 de autobuze au fost achiziționate de Primăria Municipiului București din bugetul propriu, iar contractul a fost semnat cu compania Otokar Otomotiv, câștigătorul licitației lansate de PMB, în data de 05.06.2018. Toate cele 400 de autobuze sunt Euro 6, având motor compatibil pentru funcționare cu combustibil diesel și biodiesel, dotate cu aer condiționat și sistem de ticketing electronic, podea coborâtă și GPS. Primele 100 de unități urmează a fi livrate până la sfârșitul anului acestuia, iar celelalte 300 autobuze până la sfârșitul anului viitor.

Tot pentru a reduce poluarea și pentru alinierea la tendințele europene, Municipiul București prin HCGMB nr. 376/20.06.2018 a aprobat Studiul de oportunitate "Achiziționare autobuze electrice necesare îmbunătățirii transportului public de călători pe 14 trasee în Municipiul București" și pe baza acestuia a depus 4 proiecte pentru achiziția a 100 autobuze electrice ce vor circula pe 14 trasee care tranzitează centrul capitalei.

Având în vedere datele de mai sus, precum și analiza economică, considerăm oportună achiziția a 130 autobuze hibrid pentru a reduce din poluare la nivelul Municipiului București. Acestea vor circula pe 9 trasee nemodificate după cum urmează:

LINIA	CAP I	CAP 2	NR. STATII	LUNGIME CURSA KM	nore	Nr.curse/zi	Inte	rval de cedare	Viteza comerciala	Km traseu/zi
							Varf	Intre Varfuri		
105	Valea Oltului	Piata Presei	66	19,2	14	00		15-16	14	2394,4
1.7.4	Gara De Nord	C.E.T. Sud Vitan	47	19,8	17	151,5	6-7	10-11	13	3000,3
131	Piata Romana	Complex Comercial Baneasa	26	17,2	8	84	8-9	14-15	12	1444,8
133	Gara Basarab	Bd.Tineretului	48	20	19	144	5-6	9-10	12	2875,6
178	Cartier Militari	Sala Palatului	61	28,3	24	156	6-7	9-10	12	4414,8
205	Laromet	Gara De Nord	61	28,5	10	75,5	10- 11	17-18	15	2153,7
301	Piata Romana	Jolie Ville Baneasa	41	24,6	13	119,5	7-8	12-13	15	2937,6
304	Piata Presei	Laromet	47	32,4	8	68	14- 15	15-16	19	2197,6
605	Complex Comercial Baneasa	Piata Sfanta Vineri	45	22,6	17	148,5	6-7	9-10	13	3355,5
Total					130					24774,3

Tabel 17. Alocarea autobuzelor hibrid pe trasee

Pentru autobuzele hibrid care vor fi achiziționate vom avea emisii totale de 6,2 kTone CO2/an și o reducere de 4,2 kTone CO2/an fata de varianta Diesel Euro 6. Această valoare este reprezentata de produsul dintre nr. Km/an/tip vehicul (programul de transport annual) și valoarea unitara a emisiilor CO2 evidențiata în analiza comparativă (900 g CO2/km). Astfel, pentru autobuzele hibrid avem un total de 8,6 mil. Km/an iar pentru trolebuze avem 5,8 mil. km/an.

Autobuzele hibrid ce se vor achiziționa vor avea următoarele specificații tehnice:

Parametru	Descriere	Valoare	U.M.
Dimensiuni	Lungime	12.000 +/- 350	៣៣
	Lățime (fără oglinzi exterioare)	2.550	mm
	Uși acces număr/foi ușă	3/2	
	Lățime ușă (minim)	1.200	mm
	Deschidere uşi (minim)	1.200	mm
	Arie vitrată uși (minim)	80	%

Tabel 18. Specificații tehnice minimale – autobuze hibrid

	Parbriz/lunetă/geam	Duplex	-
	Capacitate pasageri (minim)	90	-
	Suprafață utilă/călător	0,125	m
	Locuri pe scaune (minim)	24	-
Caracteristici	Manevrabilitatea (cerc)	12.500	mm
dinamice	Manevrabilitatea	7.500	mm
	(coroană)		
	Stabilitate în rampă/pantă	12	%
	(minim)		
	Unghi de atac (minim)	7	0
	Unghi de degajare (minim)	7	0
Caracteristici	Suspensie față	Funcție	
mecanice		"îngenunchere"	
		(kneeling)	
	Suspensie spate	Funcție	
		"îngenunchere"	
		(kneeling)	
	Sistem de frânare	Pneumatică cu sisteme EBS,ABS, ASR	
	Sistem de frânare auxiliar	Electrică recuperativă	

	Frână de staționare pantă	18	70
	Frână de stație	BUS-STOP	-
	Sistem direcție	Servoasistată	
	Aer comprimat	Compresor	
	Anvelope față	Tubeless	
	Anvelope spate	Tubeless	-
Echipamente	Sistem încălzire	DA	•
auxiliare	Sistem aer condiționat	DA	-
Motor	Tip	Euro 6	
termic	Durată funcționare fără reparație generală	500.000	km
Motor			
electric	Recuperare energie de frânare	DA	-
Sistem	Autonomie autobuz (minim)	500	km
propulsie			
autobuz			
Auxiliare	Echipament Wi-Fi	DA	
	Sistem diagnosticare	DA	5 5

	Sistem numărare călători	DA	-
	Sistem audio-video	DA	-
	informare călători		
	Sistem supraveghere video	DA	-
Garanție	Durată de funcționare	12	ani
	Garanție autobuz hibrid	240.000	km
		sau	
		4	ani

6. Strategia de întreținere a noilor mijloace de transport

Troleibuze

ACTIVITATEA DE ÎNTREȚINERE ȘI MENTENANȚĂ

A. ACTIVITATEA DE ÎNTREȚINERE ȘI MENTENANȚĂ ZILNICĂ

- a) Prin activitate de întreținere şi mentenanță zilnică se înțelege totalitatea lucrărilor executate de achizitor de tipul inspecție tehnică zilnică pentru verificarea starii normale de funcționare a troleibuzului din punct de vedere al sigurantei circulatiei şi înlocuirea de piese vitale cu valoare mica (becuri, contacte glisante, filtre etc) sau materiale consumabile (lichid spalare parbriz, etc) conform legislației în vigoare în România privind circulația rutiera şi transportul public de călători;
- b) Activitatea de control, întreținere și mentenanță zilnică se desfășoară în totalitate în locatiile stabilite de achizitor prevazute in anexa la contract;
- c) Manopera va fi executată de personalul desemnat de achizitor pe cheltuiala achizitorului;
- d) Toate consumabilele necesare activității de întreținere şi mentenanță zilnică sunt în sarcina furnizorului şi vor fi livrate eşalonat pe cheltuiala acestuia (completari ulei, patine de contact, inlocuiri becuri etc care au o durata de viață sub termenul de garanție al troleibuzului, respectiv 240.000 km sau min. 4 ani).

Notă:

- personalul Achizitorului pentru această activitate va fi instruit și autorizat de Furnizor;
- personalul Achizitorului poate înlocui piese defecte care prin simpla înlocuire nu conduc la imobilizarea troleibuzului cum sunt: becuri, curele cât și completarea cu ulei motor sau alte materiale consumabile din stocul pus la dispozitie de Furnizor;
- Furnizorul raspunde de organizarea activitatii privind asigurarea stocului minim catre Achizitor, astfel cum a fost el detaliat.

B. ACTIVITATEA DE ÎNTREȚINERE ȘI MENTENANȚĂ PLANIFICATĂ

Oferta va conține procesul de întreținere planificată din care să reiasa periodicitatea, operația efectuata, piesele care trebuie înlocuite preventiv, consumabilele, timpii alocați pentru manopera.

- a) Prin activitate de întreținere se înțelege totalitatea lucrărilor cerute în planul de revizii planificate al troleibuzului în funcție de rulajul și de timpul de exploatare al acestuia;
- b) Activitatea de întreținere și mentenanță planificata se desfășoară în 2 locatii stabilite de achizitor prevazute in anexa la contract;
- c) Lucrările vor fi executate de personalul desemnat de Furnizor, pe cheltuiala Furnizorului, cu materialele, SDV-urile acestuia;
- d) Toate consumabilele necesare activității de întreținere şi mentenanță planificată sunt în sarcina furnizorului pentru toată perioada de garanție si vor fi livrate esalonat pe cheltuiala acestuia. Furnizorul va pune la dispozitie piesele si materialele consumabile (ulei pentru completare si alti lubrifianti, becuri etc)care in caz de defectare pot conduce la imobilizarea troleibuzului;
- e) Ofertantul va include în prețul ofertei toate materialele și reperele consumabile care trebuie înlocuite, inclusiv lubrifianti, filtre, becuri, etc., pentru 240.000 km/troleibuz sau 4 ani de la punerea în funcțiune, inclusiv completarile cu lubrifianti, agent frigorific etc. Acestea vor fi furnizate de către Furnizor pentru toată perioada de garanție, fără nici un cost pentru achizitor.

Prin repere și materiale consumabile și de mare uzura se înțelege totalitatea materialelor și reperelor care au o perioada de utilizare normala în exploatare mai mica decat perioada de garanție de 240.000 km (, uleiuri, unsori speciale, agent frigorific, apă distilata, amortizoare, garnituri de frână, anvelope, perne de aer, bateriile de acumulatori, lamele ștergător parbriz, curele transmisie, contacte glisante etc.).

Furnizorul va asigura în funcție de necesități, începând cu prima tranșă de troleibuze livrate, la sediul desemnat de Achizitor prin contract, piesele și materialele necesare pentru buna desfășurare a activității de întreținere și reviziile planificate pentru întreaga perioadă de garanție.

ACTIVITATEA DE REMEDIERE A DEFECȚIUNILOR DIN VINA FURNIZORULUI CARE NU SE POT EFECTUA ÎN UNITĂȚILE PREVAZUTE ÎN ANEXA LA CONTRACT, ÎN TERMEN DE GARANȚIE

a. prin activitatea de remediere a defectiunilor grele in termen de garantie din vina furnizorului se intelege totalitatea lucrarilor necesare pentru aducerea troleibuzulkui la parametrii normali de functionare si care necesita dotari si echipamente speciale altele decit cele existente in dotarea locatiilor de exploatare ale achizitorului;

b.activitatea de remediere a defectiunilor grele in termen de garantie din vina furnizorului se desfasoara in unitatile de exploatare stabilite de achizitor in contract sau in alte locatii, situatie in care contractantul va suporta cheltuieleile de transport ale vehiculului;

c. lucrarile vor fi executate de personalul furnizorului pe cheltuiala si raspunderea furnizorului;

d. toate reperele si consumabilele necesare activitatii de remediere a defectiunilor grele in termen de garantie sint in sarcina furnizorului pe cheltuiala acestuia;

NOTA: Remedierea defectionilor in termen de garantie, indiferent de felul in care doreste sa procedeze furnizorul pentrunremedierea defectionilor din vina sa, va realiza conditiile si performantele declarate in oferta. In caz contrar, se vor aplica penalizarile prevazute in contract.

A. ACTIVITATEA DE REMEDIERE A DEFECȚIUNILOR CARE SE POT EFECTUA IN UNITATILE PREVAZUTE IN ANEXA LA CONTRACT ,IN TERMEN DE GARANTIE ,DIN VINA FURNIZORULUI

- a) Prin activitate de remediere a defecțiunilor care pot fi remediate in unitatile desemnate prin contract de achizitor în termen de garanție, din vina furnizorului, se înțelege totalitatea lucrărilor necesare pentru aducerea troleibuzului la parametrii normali de funcționare;
- b) Activitatea de remediere a defecțiunilor în termen de garanție din vina Furnizorului se desfășoară numai în unitatile de exploatare desemnate de Achizitor prin contract;
- c) Lucrările vor fi executate de personalul Furnizorului, cu materialele si SDV-urile acestuia ;
- d) Toate reperele și consumabilele necesare activității de remediere a defecțiunilor în termen de garanție sunt în sarcina Furnizorului si vor fi livrate pe cheltuiala acestuia;

Prin repere consumabile si de mare uzura se defineste orice reper (in afara celor enumerate mai sus in paranteza) care au o perioada de utilizare in exploatare (in conditii de exploatare din Bucuresti)mai mica decit perioada de garantie mentioata in caietul de sarciniAcestea sint in sarcina furnizorului si vor fi livrate de catre furnizor, fara nici un cost pentru achizitor pentru toata perioada de garantie

B. ACTIVITATEA DE REMEDIERE A DEFECȚIUNILOR CARE NU SUNT IMPUTABILE FURNIZORULUI (TAMPONĂRI SAU COMENZI DE LUCRU ORDONATE DE ACHIZITOR) ȘI CARE NU POT FI REMEDIATE DE ACHIZITOR

- a) Prin activitate de remediere a defecțiunilor grele care nu sunt imputabile furnizorului în termen de garanție se înțelege totalitatea lucrărilor necesare pentru aducerea troleibuzului la parametrii normali de funcționare în cazul accidentelor de circulație, avarii neimputabile furnizorului și ordonate de Achizitor;
- b) Activitatea de remediere a defecțiunilor care nu sunt imputabile furnizorului (tamponări sau comenzi de lucru ordonate de Achizitor) se vor desfasura în locatiile stabilite de achizitor prin contract;
- c) Lucrarile vor fi executate de personalul desemnat de achizitor, sub supravegherea si asistenta tehnica a
 personalului furnizorului,pe raspunderea furnizorului si pe cheltuiala achizitorului. Remedierea acestor
 defecte de catre personalul specializat al achizitorului nu da dreptul furnizorului sa scoata din garantie
 troleibuzul;
- d) Achizitia reperelor si consumabilelor necesare acestor activitati de remediere se va face pe baza specificatiilor furnizorului de catre achizitor in conditiile legale din Romania, pe cheltuiala achizitorului.

Furnizorul va prezenta o descriere detaliata a modului de realizare ale activitatilor de remediere in cazul unei solicitari de interventie din partea achizitorului(proforma).

Pentru remedierea defectiunilor neimputabile furnizorului, aparute in perioada de garantie, acesta are obligatia de a furniza achizitorului, la cerere, piesele si subansamblele de schimb necesare la preturile din oferta prezentata, ce va indica pentru fiecare reper in parte furnizorul, codul de producator si pretul unitar in lei exclusiv TVA.

C. DEFECTIUNI SISTEMATICE ȘI VICII ASCUNSE

Furnizorul va prezenta o descriere detaliată a modului de realizare ale activităților de remediere pentru viciile ascunse cât și pentru alte defecte de material si/sau de conceptie în perioada de garanție și post-garanție.

În cazul în care pe pareursul primilor 240.000 km rulati, o avarie sau o uzura anormala se repeta la mai mult de 6% din troleibuze livrate, acesta reprezintă un "defect sistematic" de concepție sau de fabricatie. În acest caz,

14 noosy - Nas

ofertantul declarat câștigător este obligat să verifice, să reproiecteze, să înlocuiasca sau să repare, pe cheltuiala proprie, elementul defect, la toate troleibuzele.

Dacă după perioada de garanție, o piesa componenta a unui agregat /subansamblu se defecteaza (rupere, spargere, uzura anormala) la un rulaj mai mic decât fiabilitatea declarată de ofertant a agregatului /subansamblului în cauza, pentru un procent mai mare de 6% din troleibuzele achiziționate se îndeplinește condiția de "viciu de material". Furnizorul va fi responsabil de remedierea viciilor ascunse pe cheltuiala sa, pentru perioada de fiabilitate declarată sau durata de viață a agregatului (subansamblului) în cauza.

Furnizorul va fi responsabil pe întreaga durată de viață a troleibuzului de remedierea viciilor ascunse de material, concepție sau execuție pentru troleibuz ca ansamblu cât și pentru toate agregatele, sistemele și echipamentele sale, pe cheltuiala sa.

Pe perioada de garanție si postgarantie, Furnizorul va înlocui sau va repara pe cheltuiala sa toate elementele cu defecte de material si/sau de concepție.

Autobuze hibrid

1. ACTIVITATEA DE ÎNTREȚINERE ȘI MENTENANȚĂ

1.1. ACTIVITATEA DE ÎNTREȚINERE ȘI MENTENANȚĂ ZILNICA

- e) Prin activitate de intreținere şi mentenanță zilnică se înțelege totalitatea lucrărilor executate de achizitor de tipul inspectie tehnică zilnică pentru verificarea starii normale de funcționare a autobuzului hibrid din punct de vedere al sigurantei circulatiei şi înlocuirea de piese vitale cu valoare mica (becuri, filtre etc.) sau materiale consumabile (lichid spalare parbriz, etc) conform legislației în vigoare în România privind circulația rutiera şi transportul public de călători;
- f) Activitatea de control, întreținere și mentenanță zilnică se desfășoară în totalitate în locatiile stabilite de achizitor prevazute in draftul la contract;
- g) Manopera va fi executată de personalul desemnat de achizitor pe cheltuiala achizitorului;
- h) Toate consumabilele necesare activității de întreținere şi mentenanță zilnică sunt în sarcina furnizorului şi vor fi asigurate pe cheltuiala acestuia (completari ulei, completari antigel, inlocuiri becuri, curele). Notă:
 - personalul Achizitorului pentru această activitate va fi instruit și autorizat de Furnizor;
 - personalul Achizitorului poate înlocui piese defecte care prin simpla înlocuire nu conduc la imobilizarea autobuzului cum sunt: becuri, curele cât și completarea cu ulei motor sau alte materiale consumabile din stocul pus la dispozitie de Furnizor.

1.2. ACTIVITATEA DE ÎNTREȚINERE ȘI MENTENANȚĂ PLANIFICATĂ

Oferta va conține procesul de întreținere planificată din care să reiasa periodicitatea, operația efectuata, piesele care trebuie inlocuite preventiv, consumabilele, timpii alocați pentru manopera.

f) Prin activitate de întreținere se înțelege totalitatea lucrărilor cerute în planul de revizii planificate al autobuzului în funcție de rulajul și de timpul de exploatare al acestuia;

- g) Activitatea de întreținere și mentenanță planificata se desfășoară în totalitate în locatiile achizitorului prevazute in anexa la draftul de contract;
- h) Lucrările vor fi executate de personalul Furnizorului; costurile manoperei vor fi suportate de Furnizor;
- i) Toate consumabilele necesare activității de întreținere și mentenanță planificată sunt în sarcina furnizorului pentru toată perioada de garanție (full warranty).
- j) Ofertantul va include în prețul ofertei toate materialele şi reperele consumabile care trebuie înlocuite, pentru toată perioada de garanție tip full warranty, fără nici un cost pentru achizitor. Prin exceptie la procesul de intretinere si mentenanta planificata, filtrul de aspiratie aer al motorului şi setul de filtre pentru climatizare se vor schimba după un parcurs de maxim 30.000 km sau cel putin o data la 6 luni pentru un autobuz

Prin repere și materiale consumabile și de mare uzura se înțelege totalitatea materialelor și reperelor care au o perioada de utilizare normala în exploatare mai mica decat perioada de garanție (antigel, uleiuri, unsori speciale, freon, apă distilata, amortizoare, garnituri de frână, perne de aer, bateriile de acumulatori, lamele ștergător parbriz, curele transmisie etc.).

Furnizorul va asigura în funcție de necesități, începând cu prima tranșă de autobuze livrate, piesele și materialele necesare pentru buna desfășurare a activității de întreținere și reviziile planificate pentru întreaga perioadă de garanție

2. ACTIVITATEA DE REMEDIERE A DEFECTIUNILOR

2.1. ACTIVITATEA DE REMEDIERE A DEFECȚIUNILOR ÎN TERMEN DE GARANȚIE DIN VINA FURNIZORULUI

- e) Prin activitate de remediere a defecțiunilor în termen de garanție din vina furnizorului se înțelege totalitatea lucrărilor necesare pentru aducerea autobuzului la parametrii normali de funcționare;
- f) Activitatea de remediere a defecțiunilor în termen de garanție din vina Furnizorului se desfăşoară în locatiile Achizitorului prevazute în anexa la draftul de contract;
- g) Lucrările vor fi executate de personalul Furnizorului pe cheltuiala și pe răspunderea Furnizorului;
- h) Toate reperele și consumabilele necesare activității de remediere a defecțiunilor în termen de garanție sunt în sarcina Furnizorului.

2.2. ACTIVITATEA DE REMEDIERE A DEFECȚIUNILOR CARE NU SUNT IMPUTABILE FURNIZORULUI (TAMPONĂRI SAU COMENZI DE LUCRU ORDONATE DE ACHIZITOR)

- e) Prin activitate de remediere a defecțiunilor care nu sunt imputabile furnizorului în termen de garanție se înțelege totalitatea lucrărilor necesare pentru aducerea autobuzului la parametrii normali de funcționare în cazul accidentelor de circulație, avarii neimputabile furnizorului și ordonate de Achizitor;
- f) Activitatea de remediere a defecțiunilor care nu sunt imputabile furnizorului (tamponări sau comenzi de lucru ordonate de Achizitor) și care se remediaza de Achizitor se vor desfășura în locația Achizitorului pe costurile si manopera acestuia, fara a fi afectata garantia autobuzului (ex.: inlocuire validator, oglinda, geam, far, lampi, etc.);
- g) Activitatea de remediere a defecțiunilor care nu sunt imputabile furnizorului (tamponări sau comenzi de lucru ordonate de Achizitor) și care nu pot fi remediate de achizitor se vor executa de catre furnizor pe costurile Achizitorului;

h) Toate reperele și consumabilele necesare acestor activității de remediere sunt în sarcina furnizorului și vor fi livrate pe cheltuiala Achizitorului.

Ofertantul va prezenta o descriere detaliată a modului de realizare ale activităților de remediere în cazul unei solicitari de intervenție din partea achizitorului (proforma).

Pentru remedierea defecțiunilor neimputabile Furnizorului, apărute în perioada de garanție, acesta are obligația de a livra Achizitorului, la cerere, piesele și subansamblele de schimb necesare la prețurile din oferta prezentata, ce va indica pentru fiecare reper în parte furnizorul, codul de producător și prețul unitar în lei exclusiv TVA.

2.3. ACTIVITATEA DE REMEDIERE A DEFECȚIUNILOR CARE NU SE POT EFECTUA ÎN ATELIERELE DIN LOCAȚIILE PREVĂZUTE ÎN ANEXA LA CONTRACT ÎN TERMEN DE GARANȚIE DIN VINA FURNIZORULUI

- a) Prin activitate de remediere a defecțiunilor grele în termen de garanție din vina furnizorului se înțelege totalitatea lucrărilor necesare pentru aducerea autobuzului la parametrii normali de funcționare și care nu pot fi remediate în locatiile prevazute în anexa la contract cu dotarile și echipamentele existente;
- b) Activitatea de remediere a defecțiunilor care nu se pot efectua in atelierele din locatiile prevazute in anexa la contract în termen de garanție din vina furnizorului se desfăşoară în totalitate în locația service a furnizorului;
- c) Lucrările vor fi executate de personalul Furnizorului pe cheltuiala și pe răspunderea acestuia;
- d) Toate reperele și consumabilele necesare activității de remediere a defecțiunilor grele în termen de garanție sunt în sarcina ofertantului pe cheltuiala acestuia.

Nota: Remedierea defecțiunilor în termen de garanție, indiferent de felul în care doreste să procedeze ofertantul pentru remedierea defecțiunilor din vina sa, va realiza condițiile și performanțele declarate în oferta. În caz contrar se vor aplica penalizările prevăzute în Caietul de Sarcini.

Furnizorul va suporta costurile legate de deplasarea autobuzelor de la Achizitor la service-ul Furnizorului și retur ori de câte ori este necesară intervenția în service-ul Furnizorului pentru lucrările de remediere a defectelor din vina furnizorului, pe toată perioada de garanție de 8 ani.

Acest preț include costul carburantului, AdBlue, manopera șofer, rovigneta și costuri de remorcare, dacă este necesar.

3. DEFECTIUNI SISTEMATICE ȘI VICII ASCUNSE

Ofertantul va prezenta o descriere detaliată a modului de realizare ale activităților de remediere pentru viciile ascunse cât și pentru alte defecte de material și/sau de concepție în perioada de garanție și post-garanție.

În cazul în care pe parcursul primilor 240.000 km, o avarie sau o uzură anormală se repetă la mai mult de 6% din autobuzele livrate, acesta reprezintă un "defect sistematic" de concepție sau de fabricație. În acest caz, ofertantul declarat câștigător este obligat să verifice, să reproiecteze, să înlocuiască sau să repare, pe cheltuiala proprie, elementul defect, la toate autobuzele.

Dacă după perioada de garanție, o piesă componentă a unui agregat /subansamblu se defecteaza (rupere, spargere, uzura anormala) la un rulaj mai mic decât fiabilitatea declarată de ofertant a agregatului /subansamblului în cauză, pentru un procent mai mare de 6% din autobuzele achiziționate se îndeplinește

condiția de "viciu de material". Furnizorul va fi responsabil de remedierea viciilor ascunse pe cheltuiala sa, pentru perioada de fiabilitate declarată sau durata de viață a agregatului (subansamblului) în cauză.

Furnizorul va fi responsabil pe întreaga durată de viață a autobuzului de remedierea viciilor ascunse de material, concepție sau execuție pentru autobuz ca ansamblu cât și pentru toate agregatele, sistemele și echipamentele sale, pe cheltuiala sa.

Pe perioada de garanție și postgaranție, Furnizorul va înlocui sau va repara pe cheltuiala sa toate elementele cu defecte de material și/sau de concepție. În situația în care apar defecțiuni la autobuzele hibrid la echipamente cu risc ridicat indiferent de procentul de defecte, Furnizorul va înlocui sau va repara pe cheltuiala sș toate elementele cu defecte de material și/sau de concepție la tot parcul de autobuze livrate.

7. Concluzii

Concluziile reieșite din prezentul studiu de oportunitate, în urma analizei soluțiilor pentru îmbunătățirea sistemului de transport public din București, vin în completarea măsurilor prevăzute în Planul Integrat de Calitate a Aerului în Municipiul București 2018 – 2022 privind îmbunătățirea calității aerului și pun în aplicare măsurile prezentate în Planul de Mobilitate Urbană Durabilă (PMUD) 2016-2030 elaborat pentru regiunea București –Ilfov privind reducerea emisiilor de gaze cu efect de seră și reducerea poluării fonice; creșterea atractivității transportului public și, ca urmare, creșterea numărului de utilizatori; creșterii siguranței și a securității activității de transport public.

Studiul propune înnoirea flotei STB prin achiziționarea a 100 de troleibuze cu autonomie de 20 km și 130 de autobuze hibrid fără plug-in necesare îmbunătățirii calității aerului prin reducerea emisiilor de gaze cu efect de seră și creșterii calității transportului public de călători la nivelul Municipiului București.

Reînnoirea parcului prin achiziția de vehicule moderne și mai puțin poluante este o prioritate pentru Municipiul București, având în vedere nivelul ridicat de poluare generat de sectorul de transport, gradul de uzură al parcului de autobuze și troleibuze utilizate în efectuarea programului de transport, precum și numărul tot mai mare al defecțiunilor înregistrate, cauzate de starea tehnică a acestora.

Valoarea totală estimată a investiției este de 409.976.690 lei fără TVA. Sursa de finanțare propusă este Programul privind îmbunătățirea calității aerului și reducerea emisiilor de gaze cu efect de seră, utilizând autovehicule mai puțin poluante în transportul public local de persoane, aprobat prin Ordinul Ministrului Mediului nr. 741/13.07.2018.

Achiziția autovehiculelor mai puțin poluante este obiectivul specific al investiției, care permite realizarea obiectivului general, respectiv îmbunătățirea calității aerului prin reducerea emisiilor de gaze cu efect de seră.

Investiția este oportună dat fiind nivelul ridicat de poluare la nivelul Municipiului București, considerând valoarea limită a nivelului de NO2 depășită, poluare generată și de autobuzele aflate în exploatare (conforme cu normele Euro 3 și Euro 4). Totodată, achiziția propusă este susținută de gradul de uzură a parcului de mijloace de transport public și de existența infrastructurii utilizate de mijloacele de transport.

Cele 130 de autobuze hibrid vor fi utilizate pe trasee cu flux mare de călători. Din estimările realizate, prin introducerea autobuzelor hibrid care vor fi achiziționate, în zonele prin care circulă traseele aferente se va realiza o reducere de 4,2 kilotone CO₂/an comparativ cu varianta Diesel Euro 6.

Troleibuzele noi vor avea autonomie de 20 km pentru a oferi posibilitatea unor legături între diverse rețele de contact existente. Distanțele care nu vor fi acoperite de rețeaua de contact variază între 200 m - 5,8 km per traseu.

Autonomia troleibuzelor este esențială pentru asigurarea mobilității și creșterea capacității de transport. În condițiile extinderii cartierelor rezidențiale, precum și a suprapunerilor unor trasee de troleibuze cu cele de autobuze, o parte din traseele existente pe care circulă troleibuze vor suferi modificări astfel încât să fie preluați cât mai mulți pasageri din zonele în care nu circulă alte mijloace de transport.

Se va inființa o nouă linie de troleibuz între capătul de linie Străulești și Piața Romană care va utiliza rețeaua de contact existentă. Această linie va contribui la creșterea numărului de pasageri și a ponderii transportului ecologic prin preluarea persoanelor care își vor lăsa autoturismele personale în noul punct Park&Ride Străulești.

De asemenea, achizițiile de noi mijloace de transport vor mări capacitatea de transport generală a STB, creându-se oportunitatea ca mijloacele de transport disponibilizate de pe traseele vizate de investiție să fie redirecționate pe rute regionale.

Totodată, îmbunătățirea flotei de autobuze va favoriza schimbarea percepției publice și va încuraja în general utilizarea mijloacelor de transport în comun în locul autoturismelor personale.

8. Surse de date pentru elaborarea studiului

- 1. Clark, N.N., F. Zhen, W.S. Wayne, J.J. Schiavone, C. Chambers, A.D. Golub, and K.L. Chandler, *Assessment of Hybrid-Electric Transit Bus Technology*, Transportation Research Board, Washington, DC, 2009;
- 2. Gianfranco Pistoia, Electric and Hybrid Vehicles Power Sources, Models, Sustainability, Infrastructure and the Market, Elsevier, Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands, 2010;
- 3. Jürg M. Grütter, Real World Performance of Hybrid and Electric Buses. Environmental and Financial Performance of Hybrid and Battery Electric Transit Buses Based on Real World Performance of Large Operational Fleets, Grütter Consulting, 2014;
- 4. Kaustubh Dilip Patil, Prof. Firoj Umraobhai Pathan, Prof. Sunil M. Mahajan, Prof. D. R. Satpute, Alternative Fuel Public Transport Buses, International Journal of Engineering Research and Development e-ISSN: 2278-067X, p-ISSN: 2278-800X, <u>www.ijerd.com</u>, Volume 10, Issue 12 (December 2014), pp. 29-35;
- 5. Nils-Olof Nylund, Kati Koponen, Fuel and Technology Alternatives for Buses. Overall Energy Efficiency and Emission Performance, VTT Technical Research Centre of Finland, 2012;
- 6. Shefali Ranganathan, *Hybrid Buses Costs and Benefits*, Environmental and Energy Study Institute 122 C Street NW, Suite 630 Washington DC;
- 7. ***, "POLICYMAKER GUIDE Which Alternative Fuel Technology is Best for Transit Buses?", Carnegie Mellon University, 2017;
- 8. Alternative Fuels Assessment and Feasibility Study Final Report, 2016, Vermont Energy Investment Corporation în cooperare cu Clean Fuels Ohio și C | B | C: Collaborations Ahead, Vision Unlimited LLC;
- Directiva 2009/33/CE a Parlamentului European şi a Consiliului din 23 aprilie 2009 privind promovarea vehiculelor de transport rutier nepoluante şi eficiente din punct de vedere energetic;
- Ordonanța de Urgență a Guvernului nr. 40/2011 privind promovarea vehiculelor de transport rutier nepoluante şi eficiente din punct de vedere energetic care transpune Directiva 2009/33/CE;
- 11. Directiva 2014/94/UE a Parlamentului European și a Consiliului din 22 octombrie 2014 privind instalarea infrastructurii pentru combustibili alternativi;
- Regulamentul (CE) nr. 1370/2007 al Parlamentului European şi al Consiliului din 23 octombrie 2007 privind serviciile publice de transport de călători pe calea ferată şi rutier şi de abrogare a Regulamentelor (CEE) nr. 1191/69 şi nr. 1107/70 (JO L 315/2007);
- 13. Legea nr. 37 din 19 ianuarie 2018 privind promovarea transportului ecologic;
- 14. Legea nr. 34 din 27 martie 2017 privind instalarea infrastructurii pentru combustibili alternativi;
- 15. Hotărârea de Guvern nr. 87 din 7 martie 2018 pentru aprobarea Strategiei privind Cadrul național de politică (CNP)pentru dezvoltarea pieței în ceea ce privește combustibilii alternativi

în sectorul transporturilor și pentru instalarea infrastructurii relevante în România și înființarea Consiliului interministerial de coordonare pentru dezvoltarea pieței pentru combustibili alternativi (CC DPCA);

- 16. Hotărârea nr. 2139/2004 din 30 noiembrie 2004 pentru aprobarea Catalogului privind clasificarea si duratele normale de funcționare a mijloacelor fixe;
- 17. Ordin nr. 741 din 13 iulie 2018 pentru aprobarea Ghidului de finanțare a Programului privind îmbunătățirea calității aerului și reducerea emisiilor de gaze cu efect de seră, utilizând autovehicule mai puțin poluante în transportul public local de persoane emis de Ministerul Mediului, Publicat în Monitorul Oficial nr. 663 din 31 iulie 2018;
- 18. Dispoziția președintelui Administrației Fondului pentru Mediu, nr. 344 din 14.09.2018
- 19. Planul de Mobilitate Urbană Durabilă București lifov 2016 2030;
- 20. Planul de Dezvoltare Regională București Ilfov pentru perioada 2014 2020;
- 21. Planul Integrat de Calitate a Aerului în Municipiul București 2018 2022;
- 22. Programul Integrat de Gestionare a Calității Aerului în Municipiul București;
- Autoritatea Municipală de Reglementare a Serviciilor Publice Studiu de oportunitate privind reorganizarea RATB – 2016;
- 24. Autoritatea Municipală de Reglementare a Serviciilor Publice Rapoarte de monitorizare
- 25. Rapoarte RATB privind situația actuală a parcului de vehicule aflat în exploatare;
- 26. Raport de activitate 2016 (RATB);
- 27. Raport de activitate 2017 (RATB);
- 28. Contract de delegare de gestiune între STB și ADTPBI
- 29. Website STB și corespondența RATB/STB -ADTPBI
- 30. https://www.gracesguide.co.uk/Fischer
- 31. http://www.apia.ro/definitii-si-termeni/
- 32. https://www.mercedes-

benz.co.id/content/indonesia/mpc/mpc_indonesia_website/enng/home_mpc/bus/home/buses_w orld/innovations/alternative_drives/hybrid_technology.0001.html

- 33. http://blogs.worldbank.org/transport/are-hybrid-and-electric-buses-viable-just-yet
- 34. www.calitateaer.ro

ADTPBI

9. Echipa de experți care a elaborat studiul de oportunitate

INSTITUȚIA	PRENUME	NUME	FUNCTIE	CONTRIBUȚIE
	Aura	RĂDUCU	Director Executiv	Elaborare studiu de oportunitate
	Susana	GEORGIU	Şef Serviciu Management de proiecte	Elaborare studiu de oportunitate
ADTPBI	Alina	CIOLAN	Manager proiect, Serviciul Management de Proiecte	Elaborare studiu de oportunitate
	Liviu	BÁRBULESCU	Analist investiții, Serviciul Management de Proiecte	Contribuții elaborare studiu de oportunitate
	Ştefan	LENTA	Inginer	Contribuții elaborare studiu de oportunitate
	Florin	DRAGOMIR	Şef Serviciu Proiecte Internaționale	Contribuții elaborare studiu de oportunitate, furnizare date și analize
	Gabriela	TITU	Şef Serviciu Proiectare Infrastructură și Avize Edilitare	Contribuții elaborare studiu de oportunitate, furnizare date infrastructură
STB	Rāzvan	NICULAE	Ing. Proiectant, Serviciul Proiectare Infrastructură și Avize Edilitare	Contribuții elaborare studiu de oportunitate, furnizare date infrastructură
	Valentin	CULEA	lng. Şef Divizia Trafic si Interventii	Contribuții elaborare studiu de oportunitate, furnizare date exploatare
	Radu	MÀNDREANU	Şef Serviciu Programare	Contribuții elaborare studiu de oportunitate, furnizare date exploatare
	Paula	IONESCU	Șef Birou Programe Circulație	Contribuții elaborare studiu de oportunitate, furnizare date exploatare
	Amalia	ANDREI	Şef Serviciu Tehnic	Coordonare caiete de sarcini

